
N A S A  

w 

*o 
h 
N 

w 
U 

I 

C O N T R A C T O R  

R E P O R T  

.(I 

PREDICTIO'N OF CONVECTIVE  ACTIVITY 
USING A  SYSTEM OF PARASITIC-NESTED 
NUMERICAL  MODELS 

Donald J. Perkey 

Prepared by 
DREXEL UNIVERSITY f . $  

Philadelphia, Penn. 19104 

f o r  George C. Marshall Space  Flight  Center 
% b 
0 

'+6.,916 

. I  

'<.j i 

NATIONAL AERONAUTICS AND S P A C E  ADMINISTRATION WASHINGTO~N, D. c. DECEMBER 1976 



TECH LIBRARY KAFB, NY 

-~ TECHNICAL REPc 
I. REPORT NO. 

NASA CR-2761 
2. GOVERNMNT  ACCESSION NO. 3. RECIPIENT'S  CATALOG NO. 

4 T I T L E  AND SUBTITLE 5. REPORT  DATE 
December 1976 Prediction of Convective Activity Using a  System of Parasitic- 

Nested  Numerical Models 
6. ORGANIZATION CME 

17. *UTHOR(S)  PERFORMING ORGANIZATION n E P m r  I 

Donald J. Pe rkeg  "189 
9. PERFORMING  ORGANIZATION  NAME AND ADDRESS 10. WORK UNIT  NO. 

Department of Physics and Atmospheric  Science 
Drexel  Uniyersity 

13, TYPE OF REPORi' 8 PERIOD  COVEREI Philadelphia.  Pennsylvania 19104 
NAS8-3 1235 b 

11. CONTRACT OR GRANT NO. 

12. SPONSORING  AGENCY NAME AND ADDRESS 

National Aeronautics and Space  Administration 
Washington, D. C. 20546 

Contractor 

15. SUPPLEMENTARY  NOTES 

* 
Present affiliation: National Center for Atmospheric Research, Boulder,  Colorado 80303 

16. I ABSTRACT A limited-area.  three-dimensional,  moist.  primitive  equation (PE) model is  developed to test the  sensitivity 
! O f  quantitative  precipitation  forecasts  to  the  initial  relative  humidity  distribution.  Special  emphasis  is  placed on the 

' I squall-line  region. To accomplish  the  desired  goal,  it w a s  necessary  to  develop  time-dependent  lateral  boundaries 
i . and  a  general  convective  parameterization  scheme  suitable  for  mid-latitude  systems.  The  sequential  plume  convec- 

tive  parameterization  scheme  presented  is  designed  to  have  the  versatility  necessary in mid-latitudes  and  to  be 
applicable  for  short-range  forecasts.  The  results  indicate  that  the  scheme is able  to  function in the  frontally  forced 
squall-line  region. in the  gently  rising  altostratus  region  ahead of the  approaching low center, and in the  over-riding 
region  ahead of the  warm  front. 

Three  experiments  are  discussed.  The  first used  a 1.5 lan vertlcal  grid  interval and  humidity  analysis  based 
on standard  rawinsonde  observations.  This  experiment  correctly  predicted  the'position of the  precipitation maxlrnum 
over Oklahoma  but  underpredicted  its  magnitude.  A'maximum  over  Kentucky-Tennessee  was  totally  missed.  The 
squall-line  precipitation  was  also too light.  The  squall  position  was  predicted to move  eastward  somewhat too 
rapidly.  The  predicted  precipitation  amount  over  Oklahoma  was  combined  stable  and  convective  in  nature.  This 
agrees with  observations in that  hourly  precipitation  records  indicate  steady  rainfall  rates  over  the  forecast  period, 
with  periods of heavy  rainfall.  In  the  squall  region  observations show rainfall  periods  lasting 1 to 2 hours with high 
rates.  This type of precipitation  was  also  indicated by the  forecast. 

A narrow band of moisture  extending  from  Central  Texas  south  along  the  coast  was  suggested by satellite cloud 
observations.  Thls band was too narrow  to be observed by the  conventlonal  rawinsonde  observations  network.  The 
second  experiment  attempted  to  enhance  the  initial  moisture  field to reflect  this  narrow band. The  inclusion of the 
moisture band enhanced  the  squall-line  precipitation  while  doing  little  to  the  Oklahoma  maximum.  The  inltiation 
and  dissipation of the  squall  line a s  well a s  the  squall-line  precipitation  amounts  were  affected by this  narrow 
moisture band. Although the  enhanced  humidity  field is  not necessarily  the  "true"  humidity  field,  it i s  a  reasonable 
and  possible  fleld  and,  thus,  indicates  the  sensitivity of short-range  quantitative  precipitation  amounts to changes 
in moisture  fields. 

The  third  experiment. which used  increased  low-level  vertlcal  resolution,  indicates  that  even  without  more 
horizontal  resolution,  and  therefore  without  added  observational  costs,  better  short-range  precipitation  forecasts 
can be obtalned. The Oklahoma  maximum was  increased by 25 percent, so that  it  more  nearly  agreed with 
observations. Also. some  increase  was noted in the  convective  region,  which  also  improved  the  forecast. 

17. KEY WORDS 18. DISTRIBUTION  STATEMENT 

Category 47 

21. NO. OF PAGES 22. PRICE 

160 $6.25 

21. NO. OF PAGES 22. PRICE 

160 $6.25 
MS 

: ' * For sale by the  National  Technical  information  Service,  Springfield.  Virginia 22161 



AUTHOR'S  ACKNOWLEDGMENTS 

The author  gratefully  acknowledges  the  advice and constant  en- 

couragement  given  him  over  the  years by D r .  Carl W. Kreitzberg  of 

Drexel Universi ty .   Without   his   confidence  and  support   th is   report  

could  never  have  been  completed. 

The author  would a l s o   l i k e   t o  acknowledge  the  advice  and criticism 

of  Drs. A. Blackadar, R. Anthes. J. Hovermale,  and H. Panofsky who, as 

members of   his   doctoral   commit tee  a t  The Pennsylvania   State   Universi ty ,  

r ev iewed   t he   r e sea rch   i n   t h i s   r epor t .  

This  research w a s  supported  through  the  Department  of  Physics  and 

Atmospheric  Science,  Drexel  University by the  fol lowing  research con- 

tracts: P r o j e c t  THEMIS. Contract AF 19628-69-C-0092 through  the A i r  

Force  Cambridge  Research  Laboratories; NSF Grant GA-35093; ERDA Con- 

t ract  No. E(11-1)-2360  and NASA Contract NAS8-31235. Also computer 

time w a s  provided by the  National  Center  for  Atmospheric  Research 1 

(NCAR) through  the Computer F a c i l i t y  and a j o i n t  NCAR Small  Scale 

Analysis   and  Predict ion  Project /Drexel   Project .  

1 I The National  Center  for  Atmospheric  Research is sponsored by 
the  National  Science  Foundation. 



TABLE OF CONTENTS 

1.1 Statement of Problem . . . . . . . . . . . . . . . . .  1 

1.2 Research  Objectives . . . . . . . . . . . . . . . . . .  3 

2.0 THE PRIMITIVE -EQUATION MODEL . . . . . . . . . . . . . . . .  5 

2.1 The  Primitive  Equations . . . . . . . . . . . . . . . .  6 

2.2 The  Planetary  Boundary  Layer  Formulation . . . . . . .  9 
2.2.1 The  Surface  Layer . . . . . . . . . . . . . . .  11 
2.2.2 The  Transition  Layer . . . . . . . . . . . . . .  16 

2.3 Numerical  Techniques . . . . . . . . . . . . . . . . .  18 
2.3.1 The  Horizontal  Filter . . . . . . . . . . . . .  18 
2.3.2 The  Finite-Difference  Formulation . . . . . . .  19 

2.3.2.1 Differencing  for  all  variables 
except  rainwater . . . . . . . . . . .  19 

2.3.2.2 Differencing  for  rainwater . . . . . .  23 
2.3.2  The  Lateral  Boundary  Conditions . . . . . . . .  25 

3.0 THE CONVECTIVE  PARAMETERIZATION  SCHEME . . . . . . . . . . .  30 

3.1 The  Sequential  Plume  Convective  Parameterization 
Scheme . . . . . . . . . . . . . . . . . . . . . . . .  38 

3.2 Convective  Base  Selection  and  Initial  Updraft 
Conditions . . . . . . . . . . . . . . . . . . . . . .  41 

3.3 Updraft  Calculations . . . . . . . . . . . . . . . . .  43 

3.4 Percent  Cloud  Cover  and  Environmental  Subsidence 
Calculation . . . . . . . . . . . . . . . . . . . . . .  50 

3.5 Calculation of the  Dissipating  Cloud  Profiles  and 
Surface  Precipitation . . . . . . . . . . . . . . . . .  57 

3.6 Detrainment  Calculations . . . . . . . . . . . . . . .  63 

eii 

i . . 



................. "_ 

Page 

4.2.2 Experiment E-I1 . . . . . . . . . . . . . . . .  109 
4.2.3 Experiment E-I11 . . . . . . . . . . . . . . . .  117 

. . .  5.0 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . .  130 
5.1 Review of the  Lateral Boundary Conditions . . . . . . .  130 
5.2 Review of the Convective  Parameterization Scheme . . .  131 
5.3 Review of the  Case  Study . . . . . . . . . . . . . . .  133 
5.4 Suggestions for Future  Research . . . . . . . . . . . .  134 

APPENDIX 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 

iv 



I 
LIST OF TABLES 

V 



LIST OF  FIGURES 

Figure  Page 

1 Vertical g r i d   f o r   s u r f a c e   l a y e r  as used   fo r   t he  
forecas ts   d i scussed   in   Chapter  4 . . . . . . . . . . .  10 

2 Res o n s e   c u r v e s   f o r   f o u r t h - d e r i v a t i v e   f i l t e r   w i t h  
. '  f3(47 = 0.005 ( u s e d   f o r   t h e   i n t e r i o r   g r i d   p o i n t s ) ;  

f o u r t h - d e r i v a t i v e   f i l t e r   w i t h  f3(4) = 0.060 (used   for  
g r i d   p o i n t s  B+2 through B+5); and  second-derivative 
f i l t e r   w i t h  B(2) = 0.24  (used a t  g r i d   p o i n t  B+l); 
(a)  x and  (b)  energy  amplification . . . . . . . . . .  20 

3 Schematic  of  geometry i n  6 z  eva lua t ion  . . . . . . . .  56 

4 Model domain. The d a r k   s o l i d   l i n e   d e n o t e s   t h e  

s 

fine-mesh  domain . . . . . . . . . . . . . . . . . . . .  74 

5 Fine-mesh i n i t i a l   c o n d i t i o n s  (1200 GMT). (a )   Sur face  
pressure  (mb), (b)   Surface  vector   winds  (m/s) ,  
(c)   Surface  temperature   ("C),   (d)   Surface  specif ic  
humidity  (gm/kg),  (e)  Surface re la t ive  humidity (%) . . 75 

6 Surface  pressure (mb) forecast   sequence.  (a)  1500 
GMT, (b)  1800 GMT, (c)  2100 GMT, (d) 0000 GMT, 
(e) 0300 GMT . . . . . . . . . . . . . . . . . . . . .  79 

7 Fine-mesh fo recas t   cond i t ions  (0600 GMT). (a)   Surface 
pressure  (mb), (b)  Surface  vector  winds  (m/s>, 
(c)   Surface  temperature   ("C),   (d)   Surface  specif ic  
humidi ty   (gm/kg) ,   (e)   Surface  re la t ive  humidi ty  ( X )  . . 82 

8 Observed p o s i t i o n s  and va lue  of t he   cen t r a l   p re s su re  
every 3 h from 1200 GMT to 0600 GMT . . . . . . . . . .  85 

9 Surface   p ressure   versus  time. (a )   Poin t  30N,  92.5W, 
(b)  Centra l  low pressure  . . . . . . . . . . . . . . .  8 7  

10  Sounding f o r  32.5NY 92.5W a t  1200 GMT. (a)  Skew-T 
plot   of   temperature  and  dew-point, (b)  S t a t i c   e n e r g y  
( s o l i d )  and s a t u r a t e d  s t a t i c  energy  (dashed)  profiles . 89 

11 Cloud q u a n t i t i e s   f o r  32.5NY 92.5W a t  1200 GMT. 
(a)  Temperature  excess  before  and  after  subsidence,  
(b) Ver t i ca l   ve loc i ty ,   ( c )  Cloud radius ,   (d)   Liquid 
o r   s o l i d  water, (e)  Induced  environmental  subsidence . 91 

1 2  Cumulus modified  sounding  for 32.5N, 92.5W a t  
1200 GMT. ( a )  Skew-T plot  of  temperature  and dew- 
poin t ,  (b) S t a t i c   e n e r g y   ( s o l i d )  and s a t u r a t e d  
s t a t i c   ene rgy   (dashed)   p ro f i l e s  . . . . . . . . . . . .  95 

Vi 



I 
Figure 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Page 

Convective  induced  changes.  (a)  Temperature 
change, (b)  Specific  humidity  change . . . . . . . .  ; 97 

Convective  precipitation  rate [mm(lO s )  ] at 4 -1 
(a) 1800 GMT, (b)  2100 GMT, (c) 0000 GMT, 
(d) 0300 GMT, (e) 0600 GMT . . . . . . . . . . . . . .  99 
Observed  squall-line  positions  at  1500, 1800, 2100, 
0000,  0300 and 0600 GMT . . . . . . . . . . . . . . . .  102 
Predicted ( a )  
precipitation 

Predicted  (a) 
precipitation 

Predicted  (a) 
precipitation 

convective  and (b) stable  accumulated 
(mm) amounts  at 1800 GMT . . . . . . . .  104 
convective  and  (b)  stable  accumulated 
(mm) amounts  at 0000 GMT . . . . . . . .  105 
convective  and (b) stable  accumulated 
(m) amounts  at 0600 GMT . . . . . . . .  106 

(a) Total  precipitation  rate [mm(lO s )  3 at 0000 GMT, 
(b) Total 18 h accumulated  precipitation (mm) at 
0600 GMT . . . . . . . . . . . . . . . . . . . . . . .  107 

4 -1 

Observed 18 h  period  21/12  to  22/06  GMT  surface  pre- 
cipitation (mm). Contours  are  as  labeled  with 
central  maximums  as  indicated . . . . . . . . . . . . .  108 
Initial 1.5 km  relative  humidity (%) fields, (a) E-I, 
(b)  E-11, (c) RHE,II - RHE-I  difference  field . . . . .  110 
Relative  humidity (%) difference  fields, - RHE-Io 
(a) Surface, (b) 4.5 km, (c) 7.5 km . . . . . . . . . .  112 
Initial  precipitable  water (w) for  (a)  E-I, (b) 
E-I1  and  (c)  E-I1  minus  E-I  difference  field . . . . .  114 
1500  GMT  E-I1  minus  E-I  difference  fields  of (a) 
accumulated  convective  precipitation (m) and  (b) 
4.5 km vertical  velocity (cm/s) . . . . . . . . . . . .  116 
0000 GMT E-I1  minus  E-I  difference  fields  of (a) 
accumulated  convective  precipitation (m) and (b)  
accumulated  stable  precipitation (mm) . . . . . . . . .  118 
0000 GMT  E-I1  minus  E-I  difference  fields.  (a)  Surface 
pressure (mb), (b) 4.5 km vertical  velocity (cm/s), 
(c) Surface  temperature  ("C), (d) 4.5 km temperature 
("C) . . . . . . . . . . . . . . . . . . . . . . . . .  119 
0600 GMT  E-I1  minus  E-I  difference  field of convec- 
tive  precipitation  rate  [mm(104s>-1~ . . . . . . . . .  121 

vii 



28  (a) 0600 GMT E-I1  minus  E-I  difference  field  of 
total  accumulated  precipitation (nun). (b) 0600 GMT 
total  accumulated  precipitation (mm) . . . . . . . . .  122 

29  Initial  E-I11  minus  E-I1  precipitable  water (mm) 
difference  field . . . . . . . . . . . . . . . . . . .  124 

30  1200  GMT  relative  humidity (X) cross-section  at  35N 
latitude  for  (a)  E-I1  and (b) E-111.  The  contour 
interval  is 10 and  the  shaded  regions  are  areas  of 
100% . . . . . . . . . . . . . . . . . . . . . . . . .  125 

31 

32 

33 

1800 GMT E-I11  minus  E-I1  difference  fields of (a) 
accumulated  convective  precipitation (mm) and (b) 
accumulated  stable  precipitation (mm) . . . . . . . . .  126 
0600 GMT E-I11  minus  E-I1  difference  fields  of  (a) 
accumulated  convective  precipitation (m), (b) 
accumulated  stable  precipitation (mm) and  (c)  total 
accumulated  precipitation (nun) . . . . . . . . . . . .  127 
0600 GMT E-I11  total  accumulated  precipitation (mm) . . 129 

viii 



DEFINITION' OF SYMBOLS 

English Letters 

A Area 
A A. area of convect ion;   subscr ip t  B denotes   va lue  

A area of subs idence   o r   c loud-f ree  a i r  
area represented  by a g r i d   p o i n t ,  i.e. h.Ay 

p' pB a t  t h e   u p d r a f t   b a s e  level 

G 
B 

Buoy 

C 

cD 

CG 

C 
8 

C psCv 

C 
Pm 

E 

e,e 

f 

S 

CO 

f ro  

8 

H 

HS , %O 

Bowen r a t i o  

p a r c e l  buoyancy as defined  on p. 41 

linear advec t ive  wave phase  speed 

convec t ive   parce l   aerodynamic   d rag   coef f ic ien t  as d is -  
cussed on p.  44 

s p e c i f i c   c l o u d  water growth rate as defined  on p. 8 

spec i f ic   c loud   or   suspended  water (mass p e r   u n i t  mass of 
moist  air)  

c Kessler conversion  threshold  value t h  

g r a v i t y  wave phase  speed 

s p e c i f i c - h e a t  of dry  a i r  a t  constant   pressure  and con- 
s t a n t  volume, r e s p e c t i v e l y  

s p e c i f i c   h e a t  of moist  a i r  a t  cons t an t   p re s su re  

t r a n s i t i o n   l a y e r   h e i g h t  

vapor   pressure;   subscr ipt  s deno tes   s a tu ra t ed   va lue  

C o r i o l i s  parameter 

f r a c t i o n  of updra f t   co re   w i thou t   r a inwa te r   f a l l i ng  
through i t  

i n t e g r a t e d  form of   t he   Bus inge r   r e l a t ionsh ips   fo r   hea t ,  
momentum and spec i f i c   humid i ty ,   r e spec t ive ly  

f r a c t i o n  o f   r a i n w a t e r   f a l l i n g   o u t s i d e   t h e   u p d r a f t   c o r e  

a c c e l e r a t i o n   d u e   t o   . g r a v i t y  

mean height   used  in   l inear   shal low-water   equat ions 

s u r f a c e   a v a i l a b l e   e n e r g y   f l u x  as discussed  on p. 13, sub- 
s c r i p t  0 denotes   va lue  a t  the   equa to r  

ix 



h 

hS 

K 

k 

L 

Lvol 

M 

s u r f a c e   l a y e r   d e p t h  

s e n s i b l e   h e a t   f l u x   t h r o u g h  level z 0 

Kessler 

Kcolav 
K c o l l  
Kevap 
K f a l l  

K1 
K2 

K4 

K5 

vertical 

%a 

%Z 

K 
Qz 

c loud   phys i c s   pa rame te r i za t ion   coe f f i c i en t s  
convers ion   coef f ic ien t   used   in   Chapter  2 
c o l l e c t i o n   c o e f f i c i e n t   u s e d   i n   C h a p t e r  2 
evaporaFion  Coefficient  used  in  Chapter 2 
modified tefminal v e l o c i t y   c o e f f i c i e n t   u s e d  
i n  Chapter 2 
convers ion   coef f ic ien t   used   in   Chapter  3 
modif ied   t e rmina l   ve loc i ty   coef f ic ien t   used  i n  
t h e   c o l l e c t i o n   c a l c u l a t i o n   i n   C h a p t e r  3 
c o l l e c t i o n   c o e f f i c i e n t  used in   Chapter  3 
modif ied  ra inwater .   fa l lout   coeff ic ient   used 
i n  Chapter 3 
modif ied   ra inwater   evapora t ion   coef f ic ien t  
used in   Chapter  3 
ra inwater   evapora t ion   coef f ic ien t   used  i n  
Chapter 3 

component  of t h e   d i f f u s i o n   c o e f f i c i e n t  
v e r t i c a l  component  of t h e   d i f f u s i o n   c o e f f i c i e n t  
f o r   h e a t  
v e r t i c a l  component  of t h e   d i f f u s i o n   c o e f f i c i e n t  
f o r  momentum 
v e r t i c a l  component  of t h e   d i f f u s i o n   c o e f f i c i e n t  
f o r   s p e c i f i c   h u m i d i t y  

h o r i z o n t a l  components  of t h e   f i l t e r   c o e f f i c i e n t   f o r   t h e  
fou r th -   and   s econd-de r iva t ive   f i l t e r s  

von Karman cons tan t  (0.35) 

Monin-Obukhov l eng th  

l a t en t   hea t   o f   condensa t ion ,   fu s ion  and subl imat ion ,  
r e spec t ive ly .  Lcs is  e i t h e r  LC o r  L depending  on  the 
temperature  S 

c h a r a c t e r i s t i c   l e n g t h  of t h e  plume parce l   (cube   roo t  of 
t h e   p a r c e l  volume) 

mass 
"fuel" mass which  feeds  the plume 3 M plume mass which  passed  through a l e v e l ;  sub- 

" pB s c r i p t  B denotes   va lue  a t  updra f t   base   l eve l  
MTOp plume mass which  passed  through z TOP 

t o t a l  plume mass i n  a g r i d  volume 

X 



-4 
m 

N 
S 

P 

NO 

'B"S 

'd 

P 

w 

: !  

'C 

'hd 

qhP 

q i P  

q r  

t o t a l   s u b s i d i n g  mass i n  a g r i d  volume 

spec i f i c   humid i ty   f l ux   t h rough  zo 

number of c l o u d s   i n  a g r i d  volume 

number concen t r a t ion  of r a i n   d r o p s  as discussed  on p. 62 

p r e c i p i t a t i o n  amount a t  t h e   u p d r a f t   b a s e   l e v e l  and a t  t h e  
s u r f a c e ,   r e s p e c t i v e l y  

convec t ive   pa rce l   dep th  

p re s su re  

t 
p, p re s su re  a t  t h e  model top,  z t 

PS 
subsided  environmental   pressure 

nonconvect ive  diabat ic   heat ing rate 

specif ic   humidi ty   growth rate as defined  on p. 8 

spec i f i c   humid i ty  (mass p e r  u n i t  mass of m o i s t   a i r )  

'e 
'h 

" satu ra t ed   spec i f i c   humid i ty  
'S 
'S 
Q se 

' SP 

spec i f i c   humid i ty  of t h e  plume environment 
spec i f i c   humid i ty  a t  l e v e l  h 
spec i f i c   humid i ty  of t h e  plume 

s u r f a c e   s p e c i f i c   h u m i d i t y  
sa tu ra t ed   spec i f i c   humid i ty  of t h e  plume environ- 
men t 
sa tu ra t ed   spec i f i c   humid i ty  of t h e  plume 

convect ive  c loud  or   suspended  water   concentrat ion (mass 
p e r   u n i t  mass of m o i s t   a i r )  

'ce 

'" Kessler  cloud water conversion  threshold  value 
'C 

cloud water i n   t h e  plume  environment 
cloud water i n   t h e  plume 

t h  

c o n v e c t i v e   p r e c i p i t a t i o n  water concentrat ion  dropped  or  
unloaded  by the   a scend ing   pa rce l  (mass p e r  u n i t  mass of 
m o i s t   a i r )  

convec t ive   r a in  or  p r e c i p i t a t i o n  water concen t r a t ion   i n  
the   ascending   parce l  (mass p e r   u n i t  mass of moist a i r )  

c o n v e c t i v e   i c e   c o n c e n t r a t i o n   i n   t h e  plume (mass p e r   u n i t  
mass of m o i s t   a i r )  
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1.0 INTRODUCTION 

1.1 Statement  of  the  Problem 

The  prediction  of  convective  activity  and  it s severity h [as been  a 

problem  for  many  years.  These  forecasts  are  needed sathe public  can 

prepare  for  the  possible  disastrous  consequences  of  these  storms.  The 

draft  of  the N O M  Project  Development  Plan  for  Project - Severe  Environ- 

mental - Storms " and  Mesoscale - Experiment (SESAME) (1974)  states:  "In  the 

7-year  period  from  July  1963  to  June 1970, for  example,  severe  local 

storms  in  the  United  States  alone  accounted  for  over 2300 deaths  and 

4 billion  dollars  damage." 

It is  possible  to  divide  convective  activity  into  two  categories 

based  on  the  physical  mechanism  initiating  the  activity; 1) thermally 

forced  convection  and 2 )  dynamically  forced  convection.  This  categori- 

zation  is  not  meant  to  imply  that  these  forcing  mechanisms  are  mutually 

exclusive;  it  is  clear  that  in  nature  there  is a continuous  transition 

from  one  category  to  the  other. 

Examples  of  thermally  initiated  convection  include  afternoon  air- 

mass  convection,  convection  caused by cold  air  moving  over  warm  water, 

i.e. cases  where  the  surface  heat  flux  destablizes  the  environment  such 

that  surface  rooted  convection  can  occur.  In  particular,  many of the 

hail-producing  convective  cells  over  the  National Hail Research xperi- 

ment (NHRE) region  in  Northeast  Colorado  occur  late  in  the  afternoon 

after  the  surface  heat  flux  has  increased  the  depth  of  the  well-mixed 

layer  to  the  extent  that  it  coincides  or  at  least  nearly  coincides  with 

the  updraft  parcel's  lifted  condensation  level, LCL (Perkey,  1973). 

Until  the  surface  adiabatic  layer  builds  high  enough  to  encompass  the 
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Examples  of  the  dynamically  forced  convection  include  the  frontally 

forced  squall  line  (Palmen  and  Newton, 1969), the  sea-breeze  convergence 

convective  band  (Pielke,  1973)  and  warm  frontal  convection  embedded  in 

altostratus  (Kreitzberg  and  Brown,  1970).  In  these  cases,  the  lifting 

due  to  the  frontal  convergence  converts  the  potential  instability  to 

realizable  conditional  instability  which  results  in  convection.  The 

severity  of  these  storms  runsfrom  the  mild  afternoon  sea-breeze  shower 

to  squall-line  tornadoes  and  flood-producing  warm-frontal  convection. 

Observations  show  that  mesoscale  organization  of  dynamically  forced 

convective  storms  often  occurs  within  cyclonic  scale  systems.  These 

mesoscale  areas  or  bands  of  showers  have  horizontal  dimensions  typically 

50 to 200 km by 500 to 800 km and  are  characterized  by  convergences on 

the  order  of s , deeper  moist  layers  than  non-convective  regions, 

extensive  cloudiness  and  embedded  clusters  of  showers  (Elliott  and 

Hotrind, 1964; Kreitzberg,  1964;  Kreitzberg  and  Brown, 1970; Browning  and 

Harrold, 1969; Browning " et  al.,  1973;  Matsumoto,  Ninomiya  and  Akiyama, 

1967). 

-1 

Observations  indicate,  therefore,  that  the  convection  oftentimes 

builds  in  a  mesoscale  environment  with  different  thermal  properties  and 

more  low-level  convergence  and  hydrostatic  vertical  motion  than  is 

characteristic  of  the  cyclonic  scale.  One,  therefore,  is  faced  with 

cyclonic  scale  systems  with 1000 km wavelengths  and  vertical  motions  of 

a  few  cm/s  in  which  are  embedded  essentially  hydrostatic  megoscale 
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systems with wavelengths of 100 km and  vertical  motions of a  few  tens 

of  'cm/s.  Within  the  mesoscale  disturbed  areas  are  embedded  non- 

hydrostatic  convective  systems  with  wavelengths  of 10 km and  vertical 

motions  of  a  few m/s. 

At this  time,  it  is  not  practical  or  possible to explicitly  calcu- 

late'details of  the  convective  activity;  it  must  be  parameterized.  In 

order  to  predict  the  range  of  convective  activity  which  includes  both 

the  thermally  and  dynamically  forced  convection,  this  parameterization 

scheme  must  be  general.  Also,  the  driving  model  must  have  a  fine 

enough  grid  to  resolve  length  scales on the  order of 200 km up  through 

the  synoptic  scale,  thus  yielding  convergence  and  vertical  motion 

patterns  with  enoughsdetail  to  represent  the  environment  in  which  the 

convection  must  evolve. 

1.2 Research  Objectives 

This report concentrates  on  the  dynamically  forced  convective 

activity  and,  in  particular,  on  the  frontally  forced  squall-line  pre- 

cipitation  region. It is the  squall  line  which  displays  the  most 

violent  behavior  and,thus,  the  most  potential  for  damage.  These  are 

the  storms  which  can  produce  locally  heavy  rains  and  their  associated 

flash  floods,  which  can  bear  hail  that  produces  crop  and  roof  damage, 

and  which  can  spawn  tornadoes  and  their  destructive  winds. 

To  attack  this  problem,  a  parasitic-nested,  fine-mesh,  three- 

dimensional,  moist,  primitive  equation  model  has  been  developed.  This 

model  contains  a  general  convective  parameterization  scheme  which  has 

been  developed  such as to  be  applicable  for  both  the  thermally  and 

dynamicaliy'  forced  convection.  The  details  of  this  scheme  and  how  it 
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differs  from  previous  schemes is discussed  in  Chapter 3. Because of the 

local  nature of the  squall  line,  a  mesoscale  grid (A - 35 km) is  desir- 
able;  however,  for  the  tests  in  this report, a  fine-mesh  grid 

(A - 132 km) is  adequate.  Even  the  fine  mesh  necessitates  the  use  of 
a  limited-area  model  which  must  reflect  the  time  changes  on  the  large 

scale. To satisfy  this  need,  a  set  of  time-dependent  lateral  boundary 

conditions  has  been  developed  and  tested.  See  Section  2.3.3  and 

Appendix  2  for  a  discussion  of  these  conditions  and  their  relation  to 

other  boundary  conditions  presently  in  use. 

Using  the  real-data  case  of 21 February  1971  this report 

addresses  several  questions: 

Are  the  lateral  boundary  conditions  as  proposed  acceptable  for 

real-data  forecast  use? 

Is the  convective  parameterization  scheme  general  for  mid-latitude 

short-teru  forecasting;  i.e.,will  it  yield  reasonable  results  in 

both  the  frontally  forced  squall-line  region  and  the  higher  based 

stratus  embedded  convective  regions  near  the  center  of  the  low? 

What is the  effect  of  the  horizontal  observational  resolution  on 

the 12 h to 18 h  forecast  quantitative  precipitation  amounts? 

What  is  the  effect of the  model  vertical  resolution  on  the 12  h to 

18 h forecast  quantitative  precipitation  amounts? 
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2.0 THE PRIMITIVE EQUATION MODEL 

Several   choices  must  be made before  and  during  the  development of 

a numerical  model. Many of  these  choices  must  be made a r b i t r a r i l y , w h i l e  

others   can  be  based upon the  experience and r e s u l t s  of o ther   researchers .  

Thus, while  a l l  numerical  models  have much i n  common, t h e r e  are numerous 

d i f f e rences   wh ich   a f f ec t   t he i r   behav io r  and s u i t a b i l i t y   f o r   s p e c i f i c  

meteorological  problems. 

1. 

2. 

3. 

4 .  

5. 

The b a s i c   c h a r a c t e r i s t i c s  of t h i s  model are: 

The height  above a s p h e r i c a l   s u r f a c e  i s  used as t h e   v e r t i c a l  co- 

o rd ina te .   Te r ra in   e f f ec t s  are not   included.  

The model i s  hydros t a t i c ;   t hus ,   t he   ho r i zon ta l   w inds   (u ,v ) ,   v i r tua l  

temperature (Tv), spec i f ic   humidi ty  (q), cloud  or  suspended water 

(c) ,  and p r e c i p i t a t i o n  w a t h r  (r) ,  are p red ic t ed .   In   add i t ion ,  

p re s su re  a t  t h e  model  top  (p ) is predicted  assuming w = 0. 

Pressure a t  a l l  o t h e r   l e v e l s  is diagnosed  hydrostat ical ly .   Densi ty  

(p) is diagnosed  using  the  gas l a w .  V e r t i c a l   v e l o c i t y  (w) is diag- 

nosed  from  Richardson's  form  of  the  continuity  equation. The 

e f f e c t s   o f  water loading are inc luded   i n   t he   hydros t a t i c   ca l cu la -  

t i ons .  

The convec t ive   t ranspor t s  are evaluated  using  an  adjustment scheme 

which is based  on a one-dimensional  Lagrangian  cumulus  model. 

As mentioned  above,  the  upper  boundary  condition is (dp/dt)= = 

w = 0. 

The la teral  boundaries  use a blending  of  specified  and model cal- 

culated  tendencies   on a l l  prognost ic   var iables .   Also,  a boundary 

reg ion   of   h igh   v i scos i ty  i s  needed. 

z t z t 

t 

z t 
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6. The  lower  boundary  employs  a  Monin-Obukhov  (1954)  surface  layer 

with an O'Brien  (1970)  Kz-profile  in  the  transition  layer. 

7. The  horizontal  filtering  necessary  in  numerical  models  is  calcu- 

lated  using  a  fourth-derivative  diffusive  filter. 

8 .  The  finite-difference  formulation  is  basically  fourth-order 

centered  in  space  and  leapfrog  in  time. A weak  time  filter is 

used  to  avoid  separation of solutions. 

2.1 The  Primitive  Equations 

The  primitive  equations  are  cast  in  an  x,y,z  coordinate  system  on 

a  latitude-longitude  grid  with  first-order  corrections  for  the  spheri- 

cal  shape  of  the  earth.  The  effects  of  terrain  are  neglected  throughout 

the  calculations.  The  momentum  equations  are 

where 1: denotes  the  earth's  radius, a denotes  the  latitude  and  the s 

subscripted  tendencies  refer  to  sub-grid  scale  tendencies.  The Pm is 

the  wet  or  moist  density  and  includes  the  effect  of  liquid  water  load- 

ing  (see  definition  below).  The  vector  notation  refers  to  the  hori- 

zontal  components  only.  The  thermodynamic  equation  is  written  as 

e  e 

+"-) +$) aT , * I  

at conv S 



7 

where 

4 is the  nonconvective  diabatic  heating  rate,. c the  cloud  water  and 

r  the  precipitating  water.  The  local  pressure  tendency  used in Eq. (3)  

is 

!!E= tan@,) - P dt d (c+r) 
at e 

Z 

where w = 0.0 and z is the  top of the  model,  For  a  derivation of 
z+ t 

L 

temperature  and  pressure  tendency  equations  with  liquid  water  loading 

terms,  see  Appendix 1. At zt, the  pressure  is  forecast  using 

k) = (-"v*ttp + gp w ) + s) 
at z 

m z  t conv, z t t 

The  moisture  equations  are 

a at = -$*$q - w 2 + QG + 2) + %)s , 
conv 

- = -?*$c - w - + CG + - aC aC 
at az 

- = -v*dr - w - + RG . ar + ar 
a t  az 

The  conv  subscripted  tendencies on the  right-hand  side of the  virtual 

temperature,  pressure  and  moisture  equations  denote  the  changes  in  the 

quantity  due  to  convection.  The  moisture  growth  terms  QG,  CG  and RG 
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are  given  by 

QC = - condensation  rate + evaporation  rate  of  c + evaporation 
rate  of r, 

CG = condensation  rate - evaporation  rate  of c - conversion 
rate - collection  rate, 

RG = conversion  rate + collection  rate - evaporation  rate 
l a  of r - - -  pm a z  (PmrVt) 9 

where Vt is  the  terminal  fall  velocity  of  the  precipitation  and  is 

positive  downward. 

where 

5.094 T 2 273.15K; 

5.094[0.2+0.12*(r-0.5)] , T 273.15K . 

Kfall is  the  value  suggested  by  Kessler (1969) when  the  rain  is  liquid 

but  has  been  modified  to  account  for  the  slow  fall  velocities of snow. 

A more  complete  discussion of this  is in Section 3.5. 

The  collection,  conversion  and  evaporation  rates  are  parameterized 

after  Kessler: 

Conversion  rate - Kconv (c - Cth) Y 

Kcon Collection  rate = .875 c r  Y 

Evaporation  rate  of r 65 
Kevap (4, - 4)r' Y 
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where Kconv, Kcolls Kevap t h  

The condensation rate and  evaporat ion  ra te  of c are c a l c u l a t e d   t o  main- 

t a i n  s a t u r a t i o n  when suspended water is presen t  and to  avoid  super- 

s a t u r a t i o n .  

and c are prescr ibed   fo l lowing  Kessler. 

The d iagnos t ic   cont inui ty   equat ion  is 

t 1 

and the   hydros ta t ic   equa t ion  is 

where r is the   layer-average T m m' 

2.2 The Plane tary  Boundary  Layer  Formulation 

The planetary  boundary  layer is defined as t h e   l a y e r   i n  which sur-  

f ace   f r i c t iona l   fo rces   cause   t he   f l ow  to   dev ia t e  from  gradient  flow. 

For  the  purposes  of  modeling,  this  layer is d iv ided   i n to  a shallow  sur- 

f a c e   l a y e r  of depth h i n  which the   f l uxes  are assumed constant  and a 

t r a n s i t i o n   l a y e r  of  depth, E-h, i n  which t h e   f l u x e s   d e c r e a s e   i n  magni- 

tude  to   their   f ree-atmosphere  values   (see Fig.  1). The depth of t h e  

cons t an t   f l ux   l aye r ,   h ,  is somewhat a r b i t r a r y ;  however, i f   t h e   s e l e c t e d  

h is too  large,   problems  can  occur a t  n igh t  when the  atmosphere becomes 

qui te   s table .   This   problem  has   been  discussed by Webb (1970),  Taylor 

(1971)  and o thers .   Phys ica l ly   the   t rouble  arises when L, t he  
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10 m 7 '  
3 E 

25 m level 2 (z2=h) 

1.22 m level 1 (2,) 

0.3 m level S (2,) 

0.0 / / / I / / / / / / / / / / / / /  GROUND 

Figure 1. Vertical g r i d   f o r   s u r f a c e   l a y e r  as used   fo r   t he  
fo recas t s   d i scussed   i n   Chap te r  4. 

Monin-Obukhov l eng th ,  becomes much less than h. This   impl ies   tha t   the  

boundary  layer air  and t h e  a i r  a t  l e v e l  h are not  coupled  through  mixing. 

Thus, the  Businger  log-linear  relationshfps  (Businger " e t  a l . ,  1971) are 

no longer   appropr ia te   for   d iagnos ing   the   meteoro logica l   quant i t ies  a t  

1.22 m from t h e   q u a n t i t i e s  a t  h. Webb (1970)  suggested  using a l i n e a r  ' 

r e l a t i o n s h i p  when z/L is greater  than  one;  however,   the same d i f f i c u l t y  

arises when z/L becomes much g rea t e r   t han  one. 

For   the   forecas ts   d i scussed   in   Chapter   4 ,  h i s  set t o  25 m. This 

is s t i l l  t o o   l a r g e   f o r   t h e   s t a b l e   n i g h t  time regime  but i t  does  not 

cause  severe  enough  problems  to  negate  the  forecast 's   value.   After 

inspec t ing   severa l   1200 GMT February  21  and 0000 GMT February 22 sound- 

i n g s   f o r   t h e   s o u t h e a s t e r n  U.S.,  t h e  mixed l a y e r   h e i g h t ,  E, was choosen 

as 1.0 km. A poss ib l e  improvement  would be   t o   i nc lude  a prognostic  equa- 

t i o n   f o r  E " a l a  Deardorff  (1972).  This  approach  would  allow a d i u r n a l  

v a r i a t i o n  of E. The roughness  length was set t o  30 cm (Hoxit,  1974). 
: 1 r 



11 

The  general  boundary  layer  formulation is similar  to  that  of 

Pinkerton  (Pinkerton  and  Kreitzberg,  1973;  Kreitzberg  et  al., 1974). It 

is assumed  that  K-theory  provides  an  adequate  and  appropriate  vehicle 

for  calculating  the  vertical  sub-grid  tendencies  included  in  the PE 

model, i.e.  it is  assumed  that  the  vertical  divergence  of  the  time- 

averaged  covariances  such  as a O / a z ,  a€I*w*/az,  a o / a z ,  can  be  re- 

" 

A 

notation  has  been  used  above  and  will  be  adhered  to  throughout  the 

remainder  of  the  discussion:  the  prime  refers  to  scales  of  motion  too 

small  to  be  expiicitly  resolved  by  the  model;  the  hat  refers  to  the 

value  of  the  quantity  averaged  over  one  grid-volume  and  one  time  step; 

the  subscript  M  denotes  momentum,  the H denotes  heat,  the Q denotes 

moisture  and  the z denotes  the  vertical  component  of K. 

2.2.1 The  Surface  Layer 

The  surface  layer, z (the  roughness  length)  to h, is modeled 

following  Monin-Obukhov  (1954)  similarity  theory,  i.e.  the  surface 

gradients  are  written  as  follows: 

0 

ae 
a Z  

where k is  von  Karman's  constant  and u*, 8, and q, are  the  scaling 

velocity,  temperature  and  specific  humidity,  respectively.  These 

scaling  quantities  are  related  to  the  surface  fluxes  of  momentum, 
< 
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sensible  heat  and  moisture  as  noted: .‘cS = PU*, hS = -C ~*8*p , P 
mS = -u*q&. qM, +H and 4 ar,e  non-dimensional  functions  related  to 

the  atmospheric  stability;  thus,  accounting  for  buoyancy  effects. L is 

the  Monin-Obukhov  length  which  is  defined  as 

2 

Q .  

where  h  is  the  heat  flux  through  level z and B S  is the  mean  surface 

layer  potential  temperature.  At  a  height zo, the  surface  horizontal 

velocity, V is  assumed  zero  while  the  surface  potential  temperature, 

- 
S 0 

S’ 

0s’  and  specific  humidity, qs, are  diagnosed. 

Businger ” et  al.  (1971)  determined  that  the 4 ’ s  should  have  the 

following  forms,  for  stable  conditions: 

a(;) = 1 + 4.7 (f ) * 

‘H (‘) =I *0.74 + 4.7 ( z )  ; 
for  unstable  conditions: 

-1/4 
‘M ( 2 )  L = [l- 1+)] , 

-1/2 

‘H ( ’  E ) = 0.74 [I - g(z)] . 

$I is  assumed  equal  to +H. The  surface  stability  is  determined  by  the 

sign  of  the  surface  heat  flux;  positive  flux  is  unstable,  negative is 

stable. - 7  . 

Q 
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As a first  cut  at  calculating  hS,  the  total  surface  available 

energy  flux, H,., is introduced.  This  quantity is the  energy  flux  avail- 

able  from  the  surface  to  modify  the  air.  In a complex  surface  radiation 

and  energy  budget  calculation, H is the  resultant of the  balance of the 

solar  energy  flux,  the  long-wave  energy  flux  and  the  soil  energy  absorp- 

tion  flux.  For  the  calculations  which  follow,  the  total  surface  avail- 

able  energy  flux is calculated  analytically  as  the  following  function of 

local  time  and  latitude; 

S 

where t is  the  local  time  and HSO is the  available  energy  flux  at  the 

equator. f(a ) contains  the  fo'llowing  latitudinal  variation; 
a. 

e 

1 1  for 0000 5 t, <, 0600 , 

(1 for 1800 5 ta. < 2400 , 

where Q is the  grid  point  latitude.  For  the  February  case  discussed 

in  Chapter 4, HSO is  as  follows; 
e 

1 j (m2 8)-l for 0000 I ta. I 0600 , 

1 j (m2 SI-l for 1800 I ta. < 2400 . 
15 j (m2 s)'l for 0600 < tg < 1800 , 

The  above  daytime  value  is  approximately  10%  of  the  average  energy  flux 

during  February  as  calculated  by  mean  energy  budget  methods.  However, 
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because  of-  the  extensive  overcast  cloud  cover  over  the  central  and 

eastern U.S., the  reduction  of  the  available  surface  energy  seems 

reasonable. 

When H is  positive,  the  available  flux  is  split  into  sensible  and S 

latent  flux  using  the  Bowen  ratio  which is set  constant  in  both  time 

and  space;  B = 0.74. This  value,  according  to  Sellers (1965, p.  105), 

is  the  North  American  average.  The  sensible  heat  flux is calculated  as 

follows 

When H is  negative,  hS = HS. S 
The  specification  of  the  surface  energy  flux  independent  of  the 

lower  layer  stability  can  cause  the  diagnosed  surface  temperature  to  be 

unrealistic  in  order to support  the  imposed  flux.  This  inconsistency 

occurs  most  frequently  at  night  under  very  stable  regimes. It seems 

physically  possible  to  impose  any  surface  flux  desired  in  a  closed-box 

experiment;  however,  the  resulting  profiles  may  not  be  log-linear  as 

Businger's  empirical  relationships  imply  is  the  case  in  the  atmosphere. 

It should  also  be  noted  that  often  the  imposed  negative  heat  flux  causes 

a  breakdown  in  the  diagnostic  relationships  due  to z/L becoming  too 

large as discussed  earlier. To overcome  these  difficulties,  a  lower 

limit is placed on L; L cannot  be  less  than h. 

Eqs. (11) are  integrated  from zo to  h  to  yield 

A '  
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analysis   programs.  (This o p t i o n  i s  descr ibed  i n  s e c t i o n  
3.7, b u t   b a s i c a l l y   r e q u i r e s  t h a t  t h e  t o t a l  surface 
p r e s s u r e   c o e f f i c i e n t   o n  t h e  wing, i.e., t h i c k n e s s + l i € t ,  
cannot  be less t h a n  some s p e c i f i e d   f r a c t i c n  of vacuum 
p r e s s u r e   c o e f f i c i e n t . )  

I f  t h e  wing t h i c k n e s s   p r e s s u r e s   a r e  t o  be   used   by   the  
wing  design o r  l i f t   a n a l y s i s   p r o g r a m s  i n  p re s su re  
l i n i t i n g   o p t i o n s ,   t h e n   t h e   n e a r - f i e l d   p r o g r a m   m u s t   f i r s t  
be run.  Curing  program  execution, the t h i c k n e s s  
p r e s s u r e s   a r e   l o a d e d   i n t o  a system common Hock and are  
t h e n   a v a i l a b l e  where needed, 

"""_ Nace l l e   -p re s su re   - f i e ld   op t ions  . - The Rear-f ie ld   program  al lows 
for UF t o  3 p a i r s  of mcelles l o c a t e d   e x t e r r a l  t o  t h e  wing- 
f u s e l a g e  (or 2 F a i r s   p l u s  a s i n g l e   n a c e l l e   a t  Y = O ) .  The nacelles 
may ke either above or  bslow the  wir.g (or both) 

The mcelle Fressure f i e l d  i s  t h e   p r e s s u r e   f i e l d   i m p o s e d   c n  t h e  
su r face   o f  t h e  wing by t h e  cacelles. A f e a t u r e  of the n e a r - f i e l d  
prograxr is t h e  choice of  ttwrapgf o r  l lg lance l l   so lu t ions  for  t h e  
n a c e l l e   p r e s s u r e   f i e l d ,   a s  shown i n  f i g u r e  3 . 6 - 3 -  (The f a r - f i e l d  
wave drag   program  uses   essenr ia l ly   %he  ?awrap"   so lu t ion) .  

A v a i l a b l e   e x p r i m e n t a l   d a t a  do not, make i t  clear whether a rrwrap3t 
o r  "glancel l   solut ion i s  more c o r r e c t .  S i n c e  t h e  nacelle-on-wing 
i n t e r f e r e n c e  term is  s u b s t a n t i a l ,   b o t h   s o l u t i o n s   a r e   a v a i l a b l e   i n  
t h e  program [ccntrol led b y  an  inpu% code) . 

3.7 Wing Ces ign   and   Li f t   Analys is  

The wing design  and l i f t  ana lys i s   p rograms  a re  seFra%e 1 i f t . i n g  
s u r f a c e   r e t h o d s  which s o l v e  :he direct  or i n v e r s e  problen  ot: 

b Dssign - t o  dzf i r .3  t h e  wing  camksr su r face   shape  
r e q u i r e d   t o   p r o d u c e  a select2d 1 i i t i r : g   F re s su re  
d i s t r i h u t i c n .  The wing design  program  includes  methods 
f o r  def i r . ing an optimum Fressure d i s t r i b u t i o n .  

e L i f t  a n a l y s i s  - t o  d e f i m  the l i t k i n g   p r e s s u r ?  
distribution a c t i n g  on a g iven  wing  camber s u r f a c e  
shape ,   and   ca l cu la t e  t h e  a s s c c i a t E d   f o r c e   c o e f f i c i e n t s .  

The l i f t   a n a l y s i s  p rogram  con ta ins   so lu t iocs  for  t h ?  effect  of 
f u s e l a g e ,   n a c e l l e s ,   c a n a r d   a n d / o r   h o r i z o n t a l   t a i l ,  ana w i R g  
t r a i l i n g   e d g e   f l a p s   o r   i r - c r e m e n t a l  wing t w i s t .  U s i y  
s u p r L o s i t i o n ,  t h e  program  so lves   for   d rag-due- to- l i f t ,  l i f t  curve 
s l c p ,  and p i t c h i n g  rmrnent c n a r a c t e r i s t i c s  of a giver! 
c o n f i g u r a t i o n  through a range of ar,gles of a t tack a t  a select-ed 
;4d ch Eumber . 
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/- I PRESSURES "GLANCE"  AWAY FROM WING AT ADJACENT 
NACELLES 

The  nacelle  pressure field and  accompanyin!)  shock  waves  "glance" 
away from the  wing  when  encountering  adjacent  nacelles. In 
application,  the  nacelle  generated  Pressure field is terminated on 
encountering  another nacelle. 

PRESSURES "WRAP" AROUND  ADJACENT NACELLE 

The  nacelle  pressure fields and  accompanying  shock  waves 
"wrap"  around  adjacent  nacelles. In application,  the  nacelle 
generated  pressure field is allowed to pass through another 
nacelle as if  it were transparent. 

FIGURE 3.6-3.-NACELLE PRESSURE FIELD CONCEPTS 

I 
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# 'x) Energy amplification (A ) - Present energy (A 
Initial energy (A ) # '  

where  the energy is defined as x (X )/2. This quantity is calculated 2 1  

for  each wavenumber, X . The  response  curves for both  the second-  and 

fourth-derivative filters as used are  shown in Fig. 2. It should be 

noted that the 8(4) for  grid  point W-6 is chosen as the  average of the 

values at  grid points B+5 and W.7. 

# 

2.3.2 The Finite-Difference Formulation 

2.3.2.1 Differencing " for all  variables except rainwater 

The  horizontal and vertical  advective terms  for all  variables except 

r are approximated by centered  finite-difference  schemes.  The horizontal 

derivatives employ a fourth-order accurate representation,  for  example, 

At the boundaries, a one-sided  fourth-order scheme is  applied;  the 

following is an example of  the scheme  as applied to the west boundary, 

B: 

and  applied  to the grid points  one Ax east  of the west  boundary, Btl: 

The  vertical  derivatives  are  approximated by a centered  second- 

order  accurate method for an uneven grid; 
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Figure 2. Response  curves  for  fourth-derivative  filter with f3(4) = 0.005 (used for  the  interior 
grid  points);  fourth-derivative  filter with f3(4) = 0.060 (used  for  grid  points B+2 
through M5); and second-derivative  filter with B(*) = 0.24 (used  at  grid  .point ~+1); 
(a) x and (b) energy  amplification. 
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where Azk = z - z and A Z ~ + ~  - zk+l - zk. Note  that  if A Z ~ + ~  = Azk, 

the  approximation  collapses  to  the  ordinary  second-order  centered 

approximation.  At  the  surface,  the  vertical  derivative  is  diagnostic 

k k-1 

due  to  the  surface  boundary  conditions; a one-sided  difference  is  used 

where Az i s  the  depth of the  surface  layer.  At zt, again a one-sided 

scheme i s  employed; . . - .  
1 

- x  
Az 

kt-l ’ 1 

t 

As mentioned  earlier,  the  horizontal  filter  terms  are  evaluated 

using  centered  differences, i.e. 

and 

The  second  derivatives  in z needed  for  the  vertical  component  of 

the  sub-grid  scale  tendencies of u, v,’ eV and q are  evaluated  using  the 
following  centered  difference; 
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where  the has  been  evaluated  at  the  half-grid  levels, i.e.  Az7'2, 5. 
a z / 2 ,  * e * .  5. as  calculated  by Eq. (20) is  not  allowed  to  become 

greater  than 0.85 of  the  stability  criterion  which  for  a  centered-in- 

space  forward-in-time  scheme  is K 7 4 when  the  diffusion  term  is At 
xz  Az 

lagged  in  time.  This  limit is  not  reached  in  the  runs  described  later. 

The  basic  time  algorithm  for  all  prognostic  variables  except  r  is 

the  centered or leapfrog  time  step;  thus, 

Because  of  numerical  stability  considerations,  this  scheme  must  be 

employed  as  follows: 

1. The  advective  and  forcing  terms  remain  unmodified  and  are  evaluated 

at  time  level T. 

2. The  sub-grid  scale  tendencies  are  lagged  in  time  and  are,  there- 

fore,  evaluated  at  time  level T-1. The  stability  limits  on f3 

and f3(2) discussed in Section 2.3.1 are  modified  by  replacing At 

( 4 )  

by  2At.  Also  the  limiting  of K discussed  above  is  adjusted  by 
XZ 

replacing At by  2At. 

3. The  convective  scale  tendencies  are  calculated  similar  to  a  for- 

ward  method  but  are  updated  only  every t, time  steps  and  remain 

constant  in  between  the  updating  (see  Chapter 3 ) .  

C 

In  order  to  control  the  time  splitting  associated  with  the  leapfrog 

scheme  a  light  time  smoother  is  applied.  The  past  value is adjusted 
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during  updating  as  shown: 

XT -l 

where v is 0.3 for p, and 0.1 for  u, v, T q and C. 
t V' 

2.3.2.2 Differencing - for  rainwater 

The  horizontal  advective  terms  for r are  approximated  by  upstream 

differences.  If u > 0 ,  
i,j 

while  if u < 0 
f,j 

At  the  boundaries,  the r advective  terms  are  diagnosed  using  the  grad- 

ient  just  inside  the  boundary,  for  example  at  the  west  boundary, B; 

u- ar axl B, j uB,j ] IrB"l,j - 'B,j]IAxj 1 
Note  that  depending  on  the  direction of the  wind,  this  scheme  may  be 

numerically  unstable;  however,  this  approximation  does  not  feed  back 

into  the  model  dynamics  due  to  the  lateral  boundary  conditions  applied 

(see  Section 2 . 3 . 3 ) ;  it is calculated  for  diagnostic  purposes  only. 

The  vertical  advection  terms  for r also  use  the  upstream  scheme. 

The  term  in  the  rainwater  equation  which  causes  the  most  difficulty 

is  the  fall-velocity  term, a(pm r Vt)/az.  &ice Vt  is  of  order 10 m/s, 
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this  term  can  become  unstable  for  small Az. Therefore a semi-implicit 

scheme  is  used.  Eq. (8) can  be  written  as 

where f (r)  is  the  forcing  term  and  is  equal  to  -V*$r - w - + conversion 
rate + collection  rate - evaporation  rate  of  r.  In  semi-implicit  form 
using  second-order  upstream-in-space  and  centered-in-time  differencing, 

we  can  write 

+ ar 
a z  

T+l T T+l T 
k+l - 'k+l + rk - rk  T+l r 

2A t 
- 

or 

r T T+l + At - r  T+l 
k + rk+l  k+l T (PmVt)i+l  'k+l 

'mlk+S 

where p I T  is 
m 

'rn I k& T a l  

Note  this  is  an 

the  layer  mean  density  at  time  step T; i.e. 

('mlk 2 pm."r 

explicit  equation  which  needs  only  an  upper  boundary 
;~ 

condition  to  obtain a solution.  The  boundary  condition  is r = o  kt+l 
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for  all  time;  thelrefore 

This  scheme  is  stable  and  non-damping. 

As with  all  semi-implicit  schemes,  if  the  Courant-Friedrichs-Lewy 

(C.F.L.) criterion  is  violated  the  scheme  remains  stable  but  the  phase 

speed is slowed.  This  may  be  acceptable  when  the  terms  being  handled 

semi-implicitly  are  not  of  interest;  however,  in  this  case  the  rainfall 

term  is  of  interest  and a reasonable  phase  speed  is  necessary.  To 

accomplish  this,  the  above  difference  equation  is  marched  forward  using 

10 small  time  steps  for  every  mbdel  time  step;  i.e.  all  the  terms  except 

the  forcing  terms  are  evaluated  and  stepped  forward 10 times  using a 

time  step  of At/iO while  the  forcing  term  is  held  constant.  This  small 

time  step  is  sufficient  to  keep  the C.F.L. criterion  from  being  violated. 

2.3.3 The  Lateral  Boundary  Conditions 

Several  authors  (Davies,  1972;  Sundstrdm,  1973;  Oliger  and 

taken  to  insure  lateral  boundary  conditions  which  are  mathematically 

well-posed  for  the  hydrostatic  primitive  equations;  however,  to  date  no 

satisfactory  solution  to  the  problem  has  been  demonstrated.  Such  well- 

posed  conditions  must  not  only  be  numerically  stable  but  must  be  non- 

reflective  in  order  to  be  of  practical  value. 

Various  practical  formulations  of  boundary  conditions  have  been 

used  and  discussed  in  the  literature.  Shapiro  and  O'Brien (1970) using 

the  filtered  equations  and  Williamson  and  Browning  (1974)  using  the 

primitive  equations  designate a region  as  inflow or outflow  based  on 
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whether  the  wind  normal  to  the  boundary  .is  in  or  out  of  the  grid  domain. 

The  boundary  conditions  are  then  based  on  this  designation  with  large- 

scale  quantities  predominantly  determining  the  conditions  in  Inflow 

regions  .and  model  quantities  predominantly  determining  the  conditions 

in  outflow  regions.  This  scheme  experiences  difficulty  when  the  large- 

scale  winds  specified  at  the  boundary  indicate  inflow,  while  the  model- 

calculated  winds  one  grid  interval  interior  to  the  boundary  indicate 

outflow. 

This  dissertation  develops a practical  boundary  technique  which 

allows  useful  limited-area  forecasts  to  be  made  in  spite  of  the 

mathematically  ill-posed  nature  of  the  problem.  The  set  of  time- 

dependent  lateral  boundary  conditions  p-resented  allows  large-scale  waves 

to  enter  the  limited-area  forecast  domain  but  does  not  allow  exiting 

large-  or  small-scale  waves  to  be  reflected  with  sufficient  amplitude 

to  ruin  the  results. 

> ' .  

The  boundary  conditions  consist  of  large-scale  time-varying  ten- 

dencies  linearly  combined  with  model-calculated  tendencies.  The  large-. 

scale  conditions  may  be  either  generated  by a large-scale  model  for 

real-time  forecasts or calculated  from  real-data  analysis for research 

studies.  In  either  case,  it  is  usually  necessary  to  interpolate  the 

large-scale  data  in  both  time  and  space  in  order  to  obtain  the  boundary 

condition  tendencies. 

The  prediction  of  any  dependent  variable, x, can  be  written  as 
follows : 
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where  the  subscripts n and p denote  the  "new"  value  after  the  boundary 

condition  and  the  "previous"  value  at a former  time.  The s denotes  the 

large-scale  specified  tendency of x, and m, the  model-calculated  ten- 
dency.  The  values of the  weighting  coefficients, W, are  given  below: 

0.0 for I = the  boundary  grid  points , 
0.4 for I - the  boundary - 1 grid  point , 
0.7  for I = the  boundary " 2  grid  points , (22) 

0.9 for I = the  boundary - 3 grid  points , 
1.0 for I = all  other  interior  grid  points . 

Thus,  the  value  at  the  boundaries  is  completely  specified  by  the  large- 

scale  imposed  value,  while  at a distance 4 A  from  the  boundaries,  the 

variable  value i s  identical  to  the  model-calculated  value. If aXRs/at 

is  zero, Eqs. (21)  and (22)  are  similar to the  "sponge"  boundary  condi- 

tions  used  by  Kessel  and  Winninghoff  (1972). 

These  equations  are  also  similar  to  the  boundary  scheme  used  by 

the  National  Meteorological  Center (NMC) limited-area  fine-mesh  model 

(LFM) (Cooley,  1973).  The LFM uses a blend  of  the LFM and  the.six-layer 

hemispheric PE model  tendencies  on  both u and v wind  components, 

temperature  and mass fields.  The  six-layer PE model  tendencies  are 

calculated  from  six-hourly PE history  fields  biquadratically  inter- 

polated  in  space  to  the LFM grid  points.  The  weighting  is  as  follows: 
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0.0 for I = the  boundary  grid  points , 
0.33 for I = the  'boundary - 1 grid  point , 
0.67 for I = the  boundary - 2 grid  points , 
1.0 for I = all  other  interior  grid  points . 

W ( 1 )  = 

The  implications  of Eqs. (21)  and  (22)  can  be  illustrated  using  the 

linear  advection  equation, 

where C is a constant  and x is  referred  to  as  height  throughout  the 
remainder  of  this  section.  In  the  absence of external  forcing, Eq. (21) 

may  be  written  in  continuous  space as 

where W ( x )  is an  analytic  function  which  fits  the  distribution  of W(1). 

Thus, Eq. (23) can  now  be  written  as 

+ CW(x) 2 = at 

It can  be  seen  that  the 

the  group  velocity  of a 

0 .  

effect  of  the  boundary  condition is to  reduce 

disturbance  to  zero  as  it  approaches  the  boun- 

dary.  Therefore,  in  effect,  the  boundary  conditions  as  given  by E q s .  

(21)  and  (22)  alters  the  basic  advection  equation  such  that  the  ill- 

posedness  of  the  boundaries  is  no  longer  an  issue. 
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Eq. (25) also i m p l i e s  that  the  disturbance's  wavelength must de- 

crease and the  gradient of x must build up i n  the boundary region.  This 

necessitates  the  use of a smoothing device i n   t h i s  region. A more  com- 

p l e t e  discussion of the boundary conditions and their  behavior is  pre- 

sented i n  Perkey and Kreitzberg (1976).  
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3.0 THE CONVECTIVE  PARAMETERIZATION SCHEME 

Previous  studies,  both  observational  (Riehl  and  Malku,s, 1961) and 

theoretical  (Lilly, 1960; Charney  and  Eliassen,  1964;  Ooyama, 1964, 1969; 

Kuo,  1965;  and  others)  have  demonstrated  that  many  tropical  disturbances, 

especially  hurricanes,  are  driven  by  the  effects  of  convection;  latent 

heat  release  and  vertical  transport of heat,  moisture  and  momentum.  Due 

to  the  importance of the  convection  it  cannot  be  ignored  by  numerical 

modelers;  however,  due  to  the  large  scale  separation  between  the  convec- 

tion  and  the  tropical  disturbance  it  is  not  possible  on  today's  com- 

puters t o  simulate  both  scales  in  detail.  Thus,  it is necessary  to 

parameterize  the  sub-grid  scale  effects of convection. 

The  convective  parameterization  schemes  to  date  can  be  divided  into 

three  categories;  the  first  two  categorizations  are  based  on  the  physi- 

cal  mechanisms  they  emphasize  and  the  third  on  the  use of the  scheme. 

Category 1 schemes  emphasize  the  lateral  mixing  of  cloud  substance  into 

the  environment  as  the  principal  means  of  atmospheric  sensible  tempera- 

ture  and  vapor  changes  while  Category 2 schemes  emphasize  the  cumulus 

induced  environmental  subsidence  as  the  principal  mechanism.  Both  types 

of schemes  require  a  closure  assumption  to  determine  the  cloud mass or 

percent  areal  coverage  and  information  about  profiles  of  in-cloud 

variables  such  as  temperature,  moisture, mass, etc.  Category 3 schemes 

or  so-called  convective  adjustment  schemes  were  developed  mainly  for 

general  circulation  or  extended-range  forecast  models.  These  schemes 

emphasize  the  avoidance  of  unstable  primitive  equation  integrations  and 

the  rapidity of the  calculation. 
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Category 1 includes  schemes  developed  and/or  used  by  Ooyama (1964, 

1969), Kuo (1965, 1974), Krishnamurti (1968), Rosenthal (1969, 1973), 

Krishnamurti  and  Moxim (1971), Mathur (1974) among  others.  These 

schemes  are  'all  very  similar  to  Kuo's  (1965)  scheme  and  thus,  the'  basics 

of the  category will be  discussed  by  using  this ' scheme as  an example. 

Also,  this  scheme  is  chosen  because  it is probably  the  best  known  and 

the  most  used  of  the  Category 1 schemes.  The  two  necessary  assumptions 

for  Kuo's  parameterization  are: 1) ' the  atmospheric  sensible  temperature 

and  vapor  changes  are  proportional  to  the  cumulus  cloud's  excess  temper- 

ature  and  vapor  profiles  and 2)  the  proportionality  for  mixing  (the  per- 

cent  cloud  cover)  is  proportional  to  the  total  moisture  convergence  in 

the  column. As implemented  by"various  researchers,  the  second  assump- 

tion  is  often  modified  such  as  to  use  only  the  moisture  convergence  in 

I : '  

.> -, , 

the  boundary  layer.  In  the  tropics,  this  yields  a  reasonable  measure  of 

the  cumulus  activity. 

To  determine  the  cloud  excess  temperature  and  vapor  profiles, Kuo 

originally  assumed  that  the  cloud  temperature  profile is that of the 

"moist  adiabat  through  the  condensation  level of the  representative 

surface  layer"  and  that  the  vapor  profile is the  saturated  specific 

humidity  profile  corresponding  to  that  temperature.  The  cloud  top  is 

defined  as  the  level  where  the  cloud  excess  temperature  becomes  zero. 

It is also assumed  that  all  the  condensate  falls  out  and  is  accumulated 

as surface  precipitation.  Kuo  (1974)  shows  how  the  pseudo-adiabatic 

assumption  can  be  modified  to  include  entrainment  effects  on  the  excess 

temperature  profile.  This  scheme,  as  first  presented,  made  no  attempt 

to  account  for  the  compressional  heating  due  to  the  cumulus  induced 

environmental  subsidence;  however,  Kuo  (1974)  argues  that  the  subsidence 
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velocity is included  in  the  average  large-scale  vertical  velocity  and 

thus,  the  compressional  heating  is  accounted  for  by  this  technique. 

Kuo  bases  the  argument  on  his  Eq.  (2.9a) 

where  the  c  subscript  refers  to  cloud  or  ascending  air,  the d subscript 

refers  to  cloud-free  or  descending  air, Q is  the  convective  latent  heat 

release  and w equals  dp/dt.  The  fallacy  in  this  argument  is  apparent  in 

Eqs. ( 2 . 9 )  where ap is  used  instead  of Xc/ ap and  aed/ap,  respec- 

tively; i.e.  Kuo  has  not  taken  proper  account  of  the  difference  between 

ae/ap  in  the  cloud  and  in  the  subsiding  environment  and  therefore,  has 

not  properly  accounted  for  the  influence of the  subsidence  heating  on 

the  vertical  distribution  .of  the  heating. 

C 

The  closure  assumption  for  determining  the  total  cloud mass is 

based  on  the  total  large-scale  moisture  convergence  in  the  column.  That 

is to  say  the  large-scale  integrated  moisture  convergence is balanced  by 

the  cloud  moisture  (vapor  and  liquid)  requirements.  This  allows  the 

calculation  of  the  percent  area of cloud  cover  which,  with  the  indivi- 

dual  cloud  properties,  yields  the  environmental  sensible  temperature  and 

moisture  changes  induced  by  the  convection.  The  1974  method  differs 

significantly  from  the  1965  method  in  the  treatment of the  moisture 

flux  (Kuo,  1965,  Eqs.  3.8  and  3.11  vs.  Kuo,  1974,  Eq. 3.11); the 
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importance  of  which is emphasized  by  Ceselski  (1973,  discussion  of 

Eq. 2.4). 

Category 2 is  represented  by  the  Arakawa  scheme  (Arakawa  et  al., 

1969; Ooyama,  1971;  Arakawa  and  Schubert,  1974).  As  stated  earlier, 

this  scheme  stresses  the  conservation  of  cumulus-scale  mass;  thus,  the 

major  mechanism  for  atmospheric  sensible  temperature  and  vapor  change is 

through  the  cloud mass detrainment  at  the  cloud  top  layer  causing  sub- 

sidence  below  that  level.  The  closure  assumption  used  by  this  scheme 

requires  that  the  convection  be  in  quasi-equilibrium  with  the  large- 

scale  forcing. 

The  Arakawa-Schubert  cloud  is  initiated  by an updraft  at  the top 

of  the  mixed-layer;  i.e.  the  convection  parameterized  by  the  scheme  is 

boundary  layer  rooted  convection.  The  cloud  conserves  static  energy 

until  the  cloud  excess  virtual  static  energy  vanishes;  this  level  is 

defined as the  cloud  top.  The  effects of entrainment  are  assumed  in- 

versely  proportional  to  the  radius, R, which  is  held  constant  with 

height.  Therefore,  clouds  with  larger R are  less  diluted  by  entrain- 

ment  and  tend  to  raise  to  greater  heights  than  clouds  with  smaller R. 

The  rainfall  is  parameterized  simply as a  fraction of the  condensate 

formed  by  the  cloud.  The  remaining  condensate  and  all  the  cloud  mass 

is then  detrained  in  a  narrow  region  at  the  cloud  top  level.  This 

induces  cooling  and  moistening  at  this  level  due  to  evaporation  of  cloud 

condensate  and  warming  and  drying  at  all  other  levels  due  to  subsidence. 

The  scheme  as  presented  in  Arakawa  and  Schubert (1974) includes  a  spec- 

trum of cloud  radii.  Because  of  entrainment,  this  also  introduces  a 

spectrum of detrainment  levels. 
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.As stated  earlier,  the  closure scheme.assumes-that the  convection 

is In quasi-equilibrium  with  the  large  scale.  This  in.es.sence  means 

that  the  relaxation  time  of  the  atmosphere's adjustment to'  convection 

is small  compared  to  the  time  scale of the  large-scale  forcing.  Arakawa 

and  Schubert  estimate  that  the  time scale,of the  large-scale  forcing is 

-10 s while  the  adjustment  is -10 s .  Thus,  the  adjustment  process  is 

in  quasi-equilibrium  with  the  large-scale  and  the  cloud mass flux  must 

be  related  to  changes  in  the  large-scale  temperature  and  moisture 

fields, i.e. the  changes  in  the  atmosphereIs  stability. 

5 4 

Category 3 schemes  include  Manabe  and  Strickler (196,4) and  Oliger 

" 
et  al.  (1970)  among  others.  These  schemes  were  developed  as  a  quick 

method  to  remove  conditional  instabil%gy  when  the  atmosphere  is  moist. 

The  scheme  instantaneously  adjusts  the  atmosphere  such  that  the  condi- 

tional  instability  is  removed  while  conserving  the  vertical  integral  of 

the  static  or  internal  energy. 

Ceselski  (1973)  compared  these  three  categories  of  parameterization 

and  made  the  following  observations: 

1. Vertical  distribution  of  heating: 

(a) Category 1 (Kuo, 1965) heating  occurs  at  all  levels  where  the 

cloud  temperature  is  warmer  than  the  environment.  The  magni- 

tude  of  the  heating  is  directly  proportional  to  the  cloud 

excess  temperature.  There  is  no  cooling  at  any  level. 

(b)  Category 2 heating  occurs  at  all  levels  except  the  detrain- 

ment  level.  The  heating  is  proportional  to  the  upward  cloud 

mass flux  and  the  environmental  stability.  At  the  detrain- 

ment  level  cooling  occurs.  Because of the  spectrum of clouds, 

the  temperaturejchange  may  be a combination of subsidence 



35 

warming  from  large  clouds  and  evaporational  cooling  from 

small clouds. 

(c) Category 3 heating  and  cooling  occur  such as to  stabilize  the 
I 

sounding. 

2. Vertical  moisture  distributions: 

Category 1 (guo,  1965)  adds  moisture  to  the  environment 'at 

all  levels  between  cloud  base  and  cloud  top.  The  moistening 

is  directly  proportional  to  the  cloud  excess  moisture. 

Category 2 adds  moisture  at  the  detrainment  level  and  drys  at 

all  levels  below  the  detrainment  level. As with  the  heating, 

the  effect  of  the  cloud  spectrum  is  to  cause  some  levels  to 

experience  moistening  and  drying  due  to  different  clouds. 

Category 3 can  add  or  subtract  moisture  at  any  level. 

As stated  in  the  beginning  of  this  section,  there  is  no  doubt  about 

the  importance  of  convection in the  tropics  where  the  convective  latent 

heat  release is the  major  source  of  energy  for  the  large-scale  distur- 

bances. In contrast,  the  major  source of energy for mid-latitude  dis- 

turbances  is  the  large-scale  baroclinicity.  Thus,  the  importance of 

the  convection in the  large-scale  energetics  is  not  as  well  defined. 

Tfacton  (1973)  proposed  that  in  some  instances  "cumulus  convection  plays 

a  crucial  role  in  the  initiation of development  through  the  release  of 

latent  heat  in  the  vicinity  of  the  cyclone  center.  In  such  cases, 

dynamical  models  that do not  adequately  simulate  convective  precipita- 

tion,  especially  as  it  might  occur  in an  environment  that  is  unsatu- 

rated,  will  fail  to  properly  forecast  the  onset of development." He 

demonstrated  this  hypothesis  by  investigating 14 storms  and  noting  that 

the  convection  near  the  low  center  apparently  initiated  development 
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earlier  than  would  have  occurred  if  only  large-scale  baroclinicity  were 

operating. 

Independent  of  the  convective  effects on the  mid-latitudes  cyclone's 

energetics,  it  is  necessary  to  include  the  convection  before  reasonable 

forecasts  of  quantitative  precipitation  can  be  made. As will  be  shown 

in  Chapter 4, the  convection  strongly  influences  the  surface  precipita- 

tion  amounts  both  in  the  vicinity  of  the  low  and  along  the  cold  frontal 

band  where  squalls  can  occur. 

With  the  exception of the  convective  adjustment  method,  the  other 

schemes  were  developed  to  parameterize  surface-rooted  convection.  This 

restriction  may  be  appropriate  and  non-limiting  in  tropical  cyclones  and 

hurricanes  where  most  of  the  above  authors  have  applied  these  schemes; 

however, this is  a  very  limiting  factor  in  extratropical  cyclones.  For 

example,  these  schemes  are  unable  to  account  for  the  mid-level  based 

Convection  observed  in  the  occluded  and  warm  frontal  regions  of  the 

cyclone  (Kreitzberg  and  Brown, 1970). Because  the  frontal  surface  may 

be  cqnsidered  as  a  material  boundary,  this  convection  is  independent  of 

the  surface  variables. It is  doubtful  if  even  squall-line  convection 

is  surface  rooted.  Thus,  a  more  general  scheme  is  necessary  for  use in 

the  mid-latitudes. 

Because  latent  heat  released  by  convective  clouds  is  an  important 

source of energy  in  a  conditionally  unstable  atmosphere  in  the  mid- 

latitudes  and  because  the  vertical  scale  of  the  convection is the  same 

order of magnitude as the  vertical  scale  of  cyclonic  disturbances,  it 

is  necessary  to  parameterize  properly  the  vertical  distribution  of  heat- 

ing  caused  by  convective  latent  heat  release.  The  resulting  meridional 

circulation  of  a  large-SCale  system  is  different  with  low-level  heating 



37 

than  with  upper-level  heating.  For  example, if heating  occurs in the 

upper  troposphere,  the  induced  meridional  circulation  would  consist of 

strong  outflow  in  a  shallow  upper  layer  and  weak  inflow  of  air in a  deep 

lower  layer.  However, if the  heating  occurs  in  the  lower  troposphere 

only,  strong  inflow  would  be  expected  in  a  shallow  low  layer  with  a  weak 

outflow  in  a  rather  deep  layer  above. 

Although  both  of  these  types  of  circulation  lead  to  conversion of 

potential  energy  into  kinetic  energy,  their  roles  in  cyclone  development 

are  quite  different.  The  strong  inflow in lower  layers  associated  wPth 

low-  and  mid-level  cloud  depths  enhances  future  convective  activity  and 

cyclone  development.  The  deep  convection  associated  with  the  mature 

stage  of  development  provides  the  vertical  energy  transport  to  higher 

altitudes  necessary  for  the  m'intenance of the  cyclone  kinetic  energy. 

Thus,  proper  formulation  of  the  cumulus  cloud  top  and  vertical  distri- 

bution  of  sensible  temperature  and  moisture  changes  is  of  significance 

in  distinguishing  different  stages  of  weather  system  evolution. 

The  above  considerations  lead  to  the  conclusion  that  the  para- 

meterization  scheme  should  include  both  horizontal  diffusion  of  decay- 

ing  cloud  material  and  environmental  changes  due  to  cloud-induced  sub- 

sidence.  If  either  mechanism  for  cumulus-induced  environmental  change 

is  neglected,  the  vertical  distribution  is  altered.  Improper  calcula- 

tion of the  subsidence  as  in  Category 1 schemes  yields  convective 

induced  changes  which  warm  and  moisten  the  environment  throughout  the 

cloud  -depth  while  neglect  of  the  horizontal  mixing  of  cloud  debris as in 

Category 2 schemes  overestimates  the  warming  and  drying  at  mid  and  lower 

cloud  levels  and  the  cooling  and  moistening  at  the  cloud  top  level. 

. .  
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The vertical  distribution of environmental  moisture  changes  can  be 

more  important  than  the  temperature  changes in a  conditionally  unstable 

atmosphere  because  the  state of the  cloud  base  region  humidity  deter- 

mines  whether  convection will occur  or  not. In extreme  cases,  the  dry 

return  flow  can  actually  dissipate  the  disturbance  (Zipser, 1969). This 

necessitates  a  reasonable  parameterization of the  cloud  efficiency in 

converting  cloud  water  into  rainwater.  The  re-evaporation  of  cloud 

water  and  its  associated  cooling is completely  neglected  by  the  pseudo- 

adiabatic  assumption  of  Category 1 schemes  and  only  superficially 

attended  to  by  Category 2 schemes.  The  direct  dynamical  impact of con- 

vection  depends on the  net  latent  heating,  including  evaporational 

cooling  as  well  as  condensational  heating. 

The  above  schemes  are  also  designed  for  cyclonic-scale  predictions 

where  the  convection  is  more  nearly in  equilibrium  with  the  large-scale 

forcing.  Therefore,  both  the  Category 1 and 2 schemes  use  a  closure 

which  preserves  this  equilibrium.  However, on the  mesoscale  the  more 

transient  nature of the  convective  systems  with  time  scales -3  h  is of 

interest.  Thus,  a  closure  system  that is more  locally  responsive  is 

necessary. 

3.1 The  Sequential  Plume  Convective  Parameterization  Scheme 

This  scheme, as do  the  other  schemes,  requires  a  cloud  model  and  a 

closure  assumption.  The  cloud  model is a  one-dimensional  Lagrangian 

cloud  model.  The  closure  scheme  is  based  on  a  vertically  integrated 

slice  method.  This  is  to  say  that  the  integrated  cloud  heating  due  to 

latent  heat  release  is  balanced  by  the  environmental  warming  due  to 

subsidence.  This  is  a  locally  derived  closure  scheme  which  is  based on 
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the  cumulus  time  scale (-10 s) being  much  shorter  than  the  time  scale 

of  the  mesoscale (-10 8 ) .  

3 

4 

As just  stated,  the  cloud  model  is  a  Lagrangian  cumulus  model  with 

dynamics  similar  to  those  developed  by  Turner  (1962),  Squires  and  Turner 

Wiggert (1969) and  Danielsen " et al.  (1972). The  physical  processes 

affecting  the  environment  surrounding  the  cumulus  cloud  which  have  been 

included  in  the  model  are  environmental  subsidence  induced  by  the  build- 

ing  cloud,  sub-cloud  evaporation of convective  precipitation  and  hori- 

zontal  mixing  of  the  dissipdting  cumulus  cloud. 

The  parameterization  scheme  uses  finite-differences  designed to 

conserve  moisture  and  heat.  The  decrease  in  the  vertical  integrated 

moisture  (vapor  and  liquid)  is  accounted  for  by  the  surface  precipita- 

tion  while  the  net  increase in temperature  is  accounted  for  by  the 

latent  heating  caused  by  the  precipitation  and  net  increase  in  cloud 

water  content.  Small  heat  imbalances  arise  in  the  model  from  releasing 

the  heat  of  fusion  and  neglecting  the  heat  required  for  melting. 

The  most  fundamental  assumption  needed  to  enable  use of a 

Lagrangian  cloud  model  for  convective  adjustment  calculations  is  that 

the  initial  buoyant  parcel  variable  values  are  appropriate  for  each  sub- 

sequent  parcel;  thus,  by  following  the  first  parcel  the  vertical  pro- 

files  of  the  cloud  variables  become  known.  Warner  (1970)  and  later 

Cotton  (1975)  maintain  that  one-dimensional  models  with  inverse R 

entrainment  cannot  predict  both  cloud  top  and  in-cloud  quantities such 

as liquid  water.  Simpson (1971) refutes  this  argument  stating  that  if  a 

rainwater  fallout  mechanism is included  as  is  the  case  with  the  Environ- 

mental  Meteorology  Branch (EMB) one-dimensional  model  and  the  model  'used 
:I CI 
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in  this  parameterization  scheme,  then  both  cloud  top  and  in-cloud  pro- 

perties  can  be  predicted. It i s  true  that  time-dependent  cloud  models 

with  many  precipitation  categories  do  a  better  job of predicting  the 

precipitation,  but  the  computer  time  required  prohibits  their  use  in  a 

parameterization  scheme.  Also,  it  should  be  noted  that  Lagrangian  dyna- 

mics  do  not  explicitly  treat  the  flow  of  the  environment  around  the 

rising  parcle  but  rather  parameterize  the  effects of the  environment  on 

the  parcel  through  the  use of virtual mass and/or  aerodynamic  drag 

coef f lcients. 

The  convective  calculations  are  performed  sequentially  in  the 

following  steps: , .  

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

Convective  base  is  selected;  starting  at  the  level of maximum 

releasable  instability,  the  resulting  convection  must  exceed  a 

minimum  depth  (usually 600 m). 

Initial  updraft  conditions  are  determined;  vertical  velocity 

impulse  and  radius  are  specified;  temperature,  pressure  and 

moisture  are  equal  to  environmental  values. 

Updraft  thermodynamics-,  microphysics,  vertical  velocity  and  radius 

are  calculated,  including  the  effects  of  entrainment,  water  load- 

ing,  virtual mass correction,  etc. 

Percent  cumulus  coverage  calculations  are  performed. 

Subsidence  and  its  effects  on  the  environment  are  evaluated. 

Precipitation,  collection  and  sub-cloud  evaporation  are  computed. 

Horizontal  mixing  of  the  mature  cloud  and  subsided  environmental 

profiles is performed  using  a  height-dependent  ratio of cloud 

mass to  environmental mass. 
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8.  The  modified  environmental  sounding  is  re-examined  for  further 

convection. 

9. The fi'nal  sounding  is  adjusted  for  hydrostatic  balance  and mass 

continuity.  Calculations  are  made  of  the  total  convective  contri- 

bution  to  changes  in  the  environment. 

3.2 Convective  Base  Selection  and  Initial  Updraft  Conditions 

The  sounding or vertical  column  in  the  primitive  equation  model  is 

interpolated  to  levels  with  vertical  spacing, Az, of 500 m  for  the  con- 

vective  calculations.  Having  obtained  the  sounding  variables  on  the 

convective  vertical  grid,  the  updraft  base  level is selected  as  the 

level  with  the  maximum  releasable  tnstability.  To  calculate  this  quan- 

tity,  a  parcel  at  a  given  level  is  imparted  an  initial  vertical  velocity, 

w  (usually 1 m/s). This  parcel  then  rises  dry  or  saturated  adiabati- 

cally,  depending  upon  whether  it is unsaturated  or  saturated,  without 

any  effects  of  freezing,  entrainment  or  water  loading.  Based  on  the  new 

parcel  virtual  temperature,  the  parcel  acceleration  is  calculated  and 

a  new  vertical  velocity  is  computed; 

Pi 

dw 
2 

2 

= g Buoy dz , 

where 

Tvp - 've Buoy = rn 9 
I ve 

and  the  subscripts p and  e  refer  to  the  parcel  and  environmental  values. 
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Notice  that  the  left-hand  side  of Eq. (26) is  the  change in the 

parcel's  specific  vertical  kinetic  energy.  Thus,  the  right-hand  side is 

also,an energy form and  can  be  shown  to  be  related  to  the  area  between 

the  environmental  and  parcel  temperature  curves on a  skew-T, In p dia- 

gram  (Haltiner  and  Martin,  1957, p. 6 3 ) .  Therefore,  the  layer  releas- 

able  instability,  rik, is 

for  Buoy > 0.0 and  where  KTOP  is  one  grid  point  below  the  level  where i 

the  vertical  velocity  drops  to  less  than w 

w /2). This  quantity  is  calculated  for  each  layer. 

pmtn  (Wpmin is  specified  as 

Pi 
The  updraft  base  level  selection  begins  where  ri is the  largest k 

proceeding  to  levels  with  successively  smaller  ri  until ri becomes 

less  than  a  preset  minimum  (usually  12.5  m / s  ) or  until  a  significant 

cloud is built. A significant  cloud  has  been  arbitrarily  defined  as  a 

cloud  with  depth  greater  than 600 m;  this  prevents  the  convective  ad- 

justment  from  spinning  its  wheels  building  many  shallow  clouds  which 

have  little  effect on the  PE  forecast.  Normally  the  level  of  highest 

ri  does  support  a  significant  cloud  but  at  times  additional  factors 

such  as  entrainment  kill  the  cloud  with  updraft  base  at  this  level  while 

a  parcel  at  a  level  with  smaller  rik  leads  to  a  significant  cloud. 

k k 
2 2  

k 

After  selection  of  the  updraft  base,  the  initial  cloud  parameters 

are  determined.  The  updraft  parcel  quantities  of  virtual  temperature, 

pressure  and  specific  humidity  are  set  equal  to  the  corresponding 

environmental  values.  The  parcel is given  an  initial  vertical  velocity 

impulse, w (usually 1 m/s),  and an  initial  updraft  radius, Ri (for  the 
Pi 
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experiments  in  Chapter 4, Ri = 3 km). This  radius is necessary  for  the 

entrainment  calculations. 

The  arbitrary  specification  of  initial  cloud  radius is the  weak 

iink  in  Lagrangian  convection  models  and  no  satisfactory  algorithm  has 

been  devised  to  parameterize  this  quantity.  Tests  have  shown  that  the 

12 h  modified  sounding  results  are  not  sensitive  to  the  initial  vertical 

velocity  and  that  the  results  are  sensitive  to  the  initial  radius  only 

when  entrainment  is  a  major  physical f&tor  limiting  the  convective 

growth.  In  the  cooler  extratropics,  entrainment  and  hence,  the  initial 

radius  are  not  critically  important,  but  in  the  warmer  tropics  where  the 

convection  is  more  dependent  on  entrainment,  the  specification  of  the 

initial  radius  is  more  crucial,  .especially to the  timing of the  convec- 

t ion. 

3.3 Updraft  Calculations 

The  updraft  quantities  are  calculated  similarly  to  those  in  the 

Weinstein-Davis  Penn  State  Lagrangian  cumulus  model  (Weinstein  and 

Davis, 1968) accounting  for  thermal  buoyancy,  vertical  momentum  entrain- 

ment  and mass entrainment  with  the  effects  of  the  buoyancy  correction 

using  a  virtual  mass  coefficient  and  the  water  loading  as  suggested  by 

Simpson  and  Wiggert (1969). The  microphysics  are  parameterized  follow- 

ing  Kessler (1969). 

The  updraft  equations  are  the  following  system  of  total  differen- 

tial  equations  describing  the  cloud growth.in Lagrangian  particle 

dynamics  form. 
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" - " 
1 2 3 4 5  

where  term 1 is  the  virtual mass parameter,  term 2 the  thermal  buoyancy, 

term  3  the  water  loading,  term 4 the  momentum  entrainment  and  term 5 the 

form  drag. 

(w + i) ; (30) 

fl 

5 6 

where  term 1 is  the  dry  adiabatic  cooling;  term  2  the  moist  adiabatic 

latent  heating (Lcs = 0 when  the  parcel  is  unsaturated),  term 3 the 

temperature  entrainment,  term 4 the  evaporational  resaturation  after 
e 

entrainment,  term  5  the  heat  of  fusion  during  freezing (L = 0 when 

Tvp > Tf or T < Tff or qcp and q = 0) and  term 6 the  sublimation 

(Ls = 0 except  at  the  temperature  where  the  vapor  pressure  is  reduced 

from  saturation  over  water  to  saturation  over ice). qs denotes  the' 

f 

V.Tp hP 

saturated  specific  humidity;  Tfi  and  Tff  are  defined  below. 

where T is  the  initial  freezing  temperature  (usually  258K), Tff the 

f inal  freezing  temperature  (usually 248K) and tf is the  time  constant 
f i  3; 
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for  the  freezlng  rate. For these  calculations, t w is  assumed 10 m. 

Thus,  the  conversion  from  liquid  to  solid  occurs  linearly  over  the 

temperature  range  from T to  Tff. 

3 
f P  

fi 

dz R T2 dz 
v VP 

Note  that  below  cloud  base q changes  by  entrainment  only  while  above 

cloud  base q equals q 
P 

P SP 

- ” 
1 2 3 

. 
0875 ] ; 

W D K1(qcp - qc  th + K2K3qcpqhp (33) 

where  term 1 is  the  condensation,  term 2 the  suspended  water  dilution 

by  entrainment,  term 3 the  vapor  dilution  by  entrainment,  term 4 the 

conversion  of  suspended  water  to  rainwater  (only  if q 

threshold  value)  and  term 5 the  collection  of  suspended  water  by  rain- 

cp ’ qc , the 
th 

water.  K1, K3 and q, are  constants  evaluated  following  Kessler (1969). 
th 

K is a constant of proportionality  prescribed  by  Kessler  which  relates 

the  diameter  and  terminal  velocity  of a drop.  This  constant  has  been 

2 

modified  for  temperatures  below  freezing.  The  fall  speeds of large 

frozen  drops  are  very  comparable  to  those of large  liquid  drops  but  the 

fall  speeds of small  frozen  drops  are  approximately 30% of  those  for 

corresponding  liquid  drops.  Because  it  can  be  asserted  that  for a 



Marshall-Palmer  distribution  large  values  of  rainwater  have  larger 

drops  than  small  values  of q fall  velocities  can  be  parameterized 
hP , 

in  a  very  elementary  fashion 

culation  proportional  to q 
hP 

by  setting  K2  in  the  fall  velocity  cal- 

when  T < TF, i.e. if  T < TF, 
P P 

where K!, is  as  prescribed  by  Kessler. 

dq 
1.125 

h p = -  K4 hp 1 
dz w R   P i  - 'hp -k w P LK1(qcp-qcth 1 

L 

r 

" - 
1 2  3 

where  term  1  is  the  precipitation  which  fell  out 

.a75 ] . 
+ K2K3qcpqhp - (34) 

4 

of  the  parcel,  term  2 

the  precipitation  dilution  by  entrainment,  term  3  the  conversion  and 

term 4 the  collection.  Again  K  has  been  modified  from  Kessler's 

suggested  value  to  account  for  freezing  in  the  fall  velocity  calcula- 

tions,  if T < TF, K4 = Ki[O.2 + 0.12(q -0.5)] where  Ki  is as suggested 

by Kessler. 

4 

P hP 

dqhd K4qhp 
dz w R  

1.125 
- a  

Y 

P i  

where q is  the  precipitation  dropped  or  unloaded  from  the  rising 

parcel. 
hd 

There  is  no  compelling  reason  for  using  the  constant R as  the i 
characteristic  depth  in  term 1 of E q s .  (34)  and  (35)  to  calculate  the 

precipitation  dropped, qhd. Other  characteristic  depths  that  suggest 

themselves  are;  the  parcel  depth, Pd, which  varies  with  w - the  up- 
draft  radius R(z) which  varies  with  w -L2 and  the  cube  root  of  the 

volume , = (Pd*R2)l'3 ,which  is  independent  of w Therefore, 

P' 

P 

Lvol P' 
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qhd ' 5 -  

W 
'. with  Ri  or L. as  characteristic  depth; 
P vol 

': I 

'hd 2 d 
P 

" with.P as  characteristic  depth; 
W 

qhd -.! - with.R(z) as characteristic  depth.. 
W $ '  
P 

,$ 
4 -6 

Because.  a  "Gapid  inverse  response  of q to  w  will  increase  the  'unload- 

ing as.w...'slows  down  and  reduce  the  unloading  as w increases, P would 

give  greatest  stability  and R(z)  the  least  stability.  Also  because  the 

initial  parcel  depth  can  be  defined  only  arbitrarily  and  because  use  of 

R has  proven  satisfactory,  the-1a;tter  has  been  used. 

hd P 

P P  d 

i 

dw 
dz 2 dz 

2 

4w 
P " 
1 2 3 

where  term 1 is  the  acceleration,  term 2 the mass entrainment,  term 3 

the  density  effect.  The  entrainment  parameter, p, is 

There  is  no  unique  requirement  for  varying  the  radius  of  the  parcel 

during  ascent in  a  Lagrangian  or  particle  dynamics  formulation.  Never- 

theless,  the  updraft  radius, R ( z ) ,  is  needed to calculate  the  entrain- 

ment  rate;  the  area of subsidence  and  the  mass  in  the  updraft column. 

Therefore,  the  vertical  distribution  of  subsidence  and of environmental 

heating  is  significantly  influenced  by  the  modeling  of R(z). Three 
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possibilities  that  could  be  used  without  violating  any  physics  include: 

(1) constant  updraft  radius  (Arakawa  and  Schubert,  1974); (2) spherical 

updraft  parcel  whose  radius  would  be  determined  from mass continuity  and 

density  calculations  (Ooyama, 1971); (3 )  vertical mass flux  continuity 

as  in  a  steady-state  updraft  (.Squires  and  Turner, 1962). 

The  third  alternative  has  been  selected as being  the n. st plausible 
, -  

and,  hopefully,  the  most  effective  means  of  modeling R(z) .  :"I:'.t should  be 

recognized  that  while  this  formulation  of R(z) is  the  same ,+,in a 

steady-state  updraft,  this  model  as  a  whole  does  not  envision  a  steady- 

state  flow  or  balance  in  any  other  sense. 

: .  

This  set  of  equations is solved  by  stepping  upward  dry  or  moist 

adibatically,  performing  the  microphysical  computations,  calculating 

the  entrainment  effects  and  then  diagnosing  the  new  vertical  velocity 

and  radius.  Care  must  be  exercised  when  the  cloud  excess  temperature 

becomes  negative  while  the  parcel  is  still  ascending  rapidly.  The 

deceleration  may  become  large  and  cause R to  expand  too  rapidly;  thus, 

implying  an  excessive  build-up  of  cloud mass. This  anviling  effect 

cannot  be  treated  properly  in  a  particle  dynamics  model so an  upper 

limit  must  be  imposed; AR/Az is  limited  such  that R cannot  double in 

less  than 250 m (except  as  controlled  by  the  upper  boundary  condition). 

This  artificial  limit  brings  the  velocity  profile  more  nearly  in  line 

with  that  obtained  by  Holton  (1973,  Fig. 3 )  through  explicit  inclusion 

of  a  pressure  perturbation  term  in  a  fully  time-dependent  one- 

dimensional  model. 

2 

To insure  conservation  of mass, an upper  boundary  condition  is 

necessary.  This  condition  is  applied  at  a  height z which  is  defined 

as  the  height  where w equals w For  this  discussion,  let z be  at 

TOP 

P pmin 1 
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the  grid  point  beiow zTOP and z2 be  at  the  grid  point  above zTOP 

is  determined  by  interpolation  when z2 is  found  by  testing  for 
('TOP 

W p < wpmd).  The  value of pmpTOP is  found  by  interoplation  between 

levels 1 and  2;  RTOp  is  calculated  using Eq. (36) with Az replaced  by 

"TOP  'TOP - '1' The  condition  is  specified  that  the mass passing 

beyond z?,: $5, *pTOP ' is 
r 

2 
M&oP 2PmpTOP IT RTOP ' 

where D = 250 m. The  factor  of  two  arises  from  considering  the mass in 

an  updraft  which  decelerates  at a constant  rate, d, to  zero  velocity  in 

a distance D while  maintaining  constant mass flux, p ITR w = 

2 
PmpTOPITRTOPwpTOP' Under  these  conditions, 

2 
mP P 

where d = w /2D.  Thus, 2 
pTOP 

= L=Top+D 2 p T~R dz = 
2 

MpTOP  mP  pmpTOP"%OPwpTOP 6t s 
TOP 

where 6t is  the  time  taken  for  the  parcel  to  travel  from z to  zTOp+D; 

therefore, 
TOP 

Therefore, 
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2 
MpTOP = 2p~pT0P %OP ' ' , '  (39) 

Furthermore, 

2 
WpTOP - 
2 

.- . 

w at  level z is found  from P 2 

2 2 

= d(z2-zTOp) = WpTOP 
2 2D ('2-'TOP) 

unless  the  above  yields  a  negative w2 in  which  case wp2 5 0 .  
P2 

3.4 Percent  Cloud  Cover  and  Environmental  Subsidence  Calculation 

To  this  point in the  calculations,  only  the  initial  updraft  parcel 

computations  have  been  made.  In  order  to  complete  the  cloud,.,l$,is 

assumed  that  the  vertical  profiles  described  by  the  initial  a,ycTnding 

parcel  determine  the  vertical  profiles of the  mature  cloud, i.e. 

subsequent  parcels  which  "fill-up"  the  cloud  have  the  same  history  as 

the  initial  parcel. 

. . "  

. .  

This  assumption  completes  the  cloud  updraft  calculations.  The 

plume  or  cloud  mass, M which  passed  through  a  given  level  is  the  cloud 

mass above  that  level  less  the  mass  entrained  above  that  level; 
P' 

Or in discrete  form 

The  total  cloud  mass  which  passed  upward  through  the  base  level, M .  

is  given  by  Eq. (41) evaluated  at zB. ! 

PB ' 
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The t o t a l  plume mass,A, i n   t h e   g r i d - p o i n t  volume is M times 
P PB 

the  number of  clouds,  N where 
P' 

and A is t h e   t o t a l  cAoud area a t  the  base  height   and is the  cloud 

base  radius .  Thus, 
PB 

&P 
a MpB  ApB 

2 
IT RB 

(44) 

Before  the  subsidence  values   can  be  calculated,  a mass detrainment 

profi'l!; 'must  be  determined. It i s  assumed tha t   t he   de t r a inmen t   p ro f i l e  

of the  decaying  cloud is t he  same as the  cloud mass p r o f i l e  of t he  

rllzrcure cloud,   hp(z) .   This   assumption  envis ions  that   the   updraf t   s tops 

when t h e   f i r s t   p a r c e l   r e a c h e s   t h e   t o p  and that   the   c loud  has   the  shape 

of R(z)  which w a s  descr ibed by t h e   i n i t i a l   p a r c e l .  The convection 

bu i lds  and  decays  without   any  s teady-state   s tage.   This   picture  is more 

in  l ine  with  the  Thunderstorm  Project  (Byers  and Braham, 1949)  descrip- 

t i o n   t h a n   w i t h  a s teady  giant   thunderstorm  or  a hot  tower  with  contin- 

uous upward f lux .  

The subs idence   ca l cu la t ions   beg ins  by def in ing   the   " fue l"  mass, 

M f ,  which suppl ies   the  c loud;  

where % is t h e   t o t a l  area, pmB is the   mo i s t   dens i ty  a t  the  cloud  base 

and 6zf is the   depth   o f   the   fue l   l ayer .   Equat ing& and Mf y i e l d s  
P 
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n 

where a is  the  percent  cloud  cover  at  the  base. 
PB 

Requiring  that  the  computed  subsidence  yield  zero  net  cumulus 

scale  vertical  motion  (the  net  vertical  motion is accounted  for in 

Section 3.7) yields 

w = (1-a)w + a w  = 0 
C P  cs P cu 

or 

where  the  subscripts s and u refer  to  subsidence  and  updraft  v 

(47) 

(48) 

alues  and 

the  c  subscript  refers  to  cumulus  values.  The w's are  averaged  over  the 

spatial  scale afld lifetime  of  the  cumulus  cloud.  If we define As as 

the  total mass subsiding  due  to  convection,  we  can  write 

or 

Substituting A from Eq. ( 4 4 )  and As = Aspms 6z and  dividing  both 

As  and  A  by % yields 
P 

P 



where a s ( z )  = 1 - ap(z) = 1 - a [R (z)/RBl.  Note  that  once a is 2 2 
PB PB 

determined  then bz (2) can  be  evaluated. 
S 

However,  at  this  point  neither a or 6, are  known. To clqse  the 
PB  f 

problem,  the  assumption is made  that  the  integrated  pressure  change 

through  the  depth of the  cloud  due to the  latent  heat  release  is  equal 

to  the  integrated  pressure  change  in  the  environment  through  the  same 

depth  due  to  the  sensible  temperature  change  induced  by  subsidence. 

This  assumption is consistent  with  the  cloud  envisioned  earlier in 

that  this is the  same  as  requiring  equality of the  integrated  subsided 

environmental  and  cloud  densities;  thus,  the  cloud  mean  buoyancy is 

zero.  This  is  essentially  an  integrated  slice  method.  With  this 

closure  assumption,  the  subsidence  and  the  percent  cloud  cover  are 

uniquely  defined. 

Thus,  we  can  write 

and 

Let P ( z )  be  the  initial  environmental  density  profile  before  subsi- 

dence,  then pms = + Apms and p = + Apmp. This  leads  to  the 

constraint  that 

me 

'me mp  Pme 
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i'" Apmp(z) dz = ( z )  dz . 
B 

. .  

(54) 

Note  that Ap is  calculated  during  the  parcel  ascent;  thus,  in  order  to 

reduce  the  effect  of  large  cumulus  cloud  water  and  precipitation  values, 

the  water  loading  effects on Ap are  reduced  such  that  the  maximum 

liquid  water  used  to  calculate p is  0.5 gm/kg.  From  the  equation of 

state,  neglecting  the  effects of the  liquid  water,  we  can  write  for  any 

level z in  the  subsiding  air 

mP 

mP 

mP 

A% ATvs 
PS PS  Tvs ' 

- = " -  

which  reduces  to 

if  Ap  at a constant  level z is  assumed  small  during  the  subsidence  pro- 

cess. AT can  be  approximated  by (aT /az )  6 z  . This  neglects  hori- 

zontal  advection  and  the  diabatic  temperature  changes  due  to  subsidence 

evaporation.  Thus,  as  a  first  approximation 

S 

vs V e s  

or 
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where  the  moist   densit ies  have  been  replaced by t h e   v i r t u a l   d e n s i t y  and 

(aTV/az), has  been  replaced by ye(z).  Because R(z) and are of t h e  

same orde r  of  magnitude  and a is of order  0.1,  as a f i r s t  approxima- 

t ion  6p is d i r e c t l y   p r o p o r t i o n a l   t o  0: This  allows a quick itera- 

t ive method f o r   s o l v i n g   f o r  a and  6zf.  Note 62, i s  the  subsidence at 

the   base   l eve l .  

PJ3 

P PB' 

PB 

A f i r s t  guess of 62;  is made (usua l ly  0.25 km), then a' and  6pk 
PB 

are ca l cu la t ed .  -62, is then 

This   6zf   yields   6ps  near ly   equal   to   6p  thus  indicat ing  that   the   approx-  

imation t h a t 4  Ap (z) dz i s  p r o p o r t i o n a l   t o  a is j u s t i f i e d .  ms PB 

Changes  due t o   s u b s i d e n c e   i n   v a r i a b l e s   r e p r e s e n t a t i v e  of a l a y e r  

Z 
P' 

B 

mus t   be   ca lcu la ted   accura te ly   i f   the   ba lance  of moisture  and  heat is t o  

be  acceptable .   This   requires  more care than   u sed   i n   t he   ca l cu la t ions  

above.  Note t h a t  Eq. ( 4 6 )  yie lds   the   subs idence  of a p a r c e l   s t a r t i n g  a t  

level z; i n   a c t u a l i t y  what is des i r ed  is the  subsidence of a p a r c e l  

a r r i v i n g  a t  z. This   requi res  a Lagrangian  calculat ion of an  environ- 

mental   var iable ,   such as temperature,  which w i l l  a r r i v e  a t  1 e v e l . z .  

S t a r t i n g   w i t h  Eq. (41)  and  evaluating a t  l e v e l  z1 + 6zs (see Fig. 31, 

w e  can write 

The mass subsiding, Ms, a t  level z + 6zs is 
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Figure 3. Schematic of geometry  in 6z evaluation. 
S 

where % is  the radius of the circle  having  an  area  equal to AT. 
Eq. (50) dictates  that  for  each  cloud 

Again calculating the subsidence, 6zs, such that the net cumulus  scale 

vertical velocity is zero  yields 

Mp(z) = M (z+6zs) + 
P 

(z')R2(z') - Mp(z')p(z')] dz' 
bi 
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Because 6z is -100 m, almost  no  error  is  made  by  neglecting  the 
8 

second  integral  in Eq. (59)  and  replacing  the  coefficient  of rr% by 2 

p,(z'). Thus, Eq. (59)  becomes 

A quick  method  of  solving  the  above  integral  equation  to  determine 6z 

has  been  developed  and  is  discussed  in  Kreitzberg  et  al. (1974). 
S 

As stated  earlier,  the  new  environmental  values  at  level z are 

detehined by  interpolating to find  the  variable  values  at z + 6 z s ( z )  

and  then  lowering  a  parcel  with  these  values  to z .  During  this  sub- 

sidence  process  the  effect  of  evaporation  of  existing  cloud  water  is 

evaluated.  Thus,  a  new  environmental  sounding  is  constructed;  this 

sounding  will  be  mixed  with  the  dissipating  cloud  sounding  in  propor- 

tion  to  their  respective  areal  coverage. 

3.5 Calculation of the  Dissipating  Cloud  Profiles  and  Surface 
Precipitation 

The  cloud  profile  of  temperature  is  assumed  to  be  the  same  as  that 

traced by the  lead  parcel. At this  point  in  the  calculation,  the  sus- 

pended  water  profile  is  that of an  active  cumulus,  not  that of a  dissi- 

pating  cumulus  cloud. It is  therefore  imperative  to  consider the 
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changes  to  this  profile  which  occurs  between  these  stages.  One  of  the 

major  changes  is  due  to  the  collection  of  the  suspended  water  by  pre- 

cipitatfon. 

In  considering  the  process of cloud  "aging,"  several  questions  must 

be  answered: 

1. 

2. 

3. 

4. 

5 .  

6. 

What  fraction  of  the  precipitation  falls  within  the  updraft  and 

what  portion  falls  outside  the  updraft? 

What  fraction  of  the  updraft  has  precipitation  falling  through  it? 

What is the  collection  rate  of  the  precipitation? 

What  is  the  role  of  entrainment  between  the  building  and  dissipat-. 

ing  stages? 

What  effect  does  the  continued  autoconversion  have  on the'final 

suspended  water  profile? 

What  is  the  effect  of  other  buoyant  parcels  on  the  moisture  budget 

in  the  cloud? 

As a  first  approximation  to  the  effects  of  continued  entrainment, 

autoconversion  and  convection  which  could  only  be  considered  appro- 

priately  in  a  time-dependent  model,  it  is  assumed  that  their  net  effect 

is  zero,  i.e.  that  the  cooling  and  drying  caused  by  the  additional 

entrainment  plus  the  removal  of  suspended  water  by  autoconversion  is 

canceled  by  the  addition  of  suspended  water  by  further  convection. 

Both  the  fraction  of  precipitation  falling  outside  the  updraft 

core, fro, and  the  fraction  of  updraft  core  without  falling  water, fCO, 

are  considered  to  be  functions  of  the  distance  below  cloud  top; 
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. . .  

It  should  be  noted  that  this  parameterization  does  not  consider  one  of 

the  most  important  parameters  affecting  these  quantitites,  that  is,  wind 

shear.  The  collection  of  suspended  water  by  the  falling  water  is  para- , 

meterized  after  Kessler (1969). 

Evaporation  of  falling  water  Pnto  subsaturated  updraft  below  the 

condensation  level  and  into  environment  air  helps  to cool-and moisten 

the  sounding.  This  process  occurs  in  three  regions: 

1. In  the  area  around  the  updraft  with  precipitation  falling  through 

it. 

2. In  the  unsaturated  updraft  core  below  the  condensation  level. 

3. In  the  subcloud  region  below  the  updraft. 

At  this  time,  the  effect  of  evaporation  in  region 1 is  neglected. 

Before  the  total  precipitation  can  be  calculated  the  precipitation 

dropped, qhd, profile  must  be  adjusted. qhd wa8  calculated  following 

the  actively  rising  lead  parcel;  thus,  the  rainwater  dropped  at  each 

level  is  the  amount  unloaded  at  that  level  by  a  parcel  of mass ITR Azp . 
The  cloud  is  "filled-up"  by  like  parcels,  each  of  which  dropped  an 

amount q Therefore,  the  total  rainwater  dropped  at  a  given  level  is 

calculated  as  the  amount  dropped  by  one  parcel  at  that  level  times  the 

number  of  parcels  which  passed  through  the  level; 

2 
mP 

hd 

The  rainfall  concentration, q , at  any  level  is  then  calculated r 

as 
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or 

At this  point, a decision  is  made  a5  to  whether  collection  or  'evapora- 

tion  should  occur;  if qcp is greater  than  zero  then  collection  occurs, 

otherwise  evaporation  occurs.  Following  Kessler,  the  collection  equa- 

tion  is 

where  the  terminal  velocity  of  the  falling  precipitation  is  given by 

.125 vt = K4 qr 

and 

5.094, T > 273.15K; 
P 

K4 1 . 0 - [ 0 . 8 + 0 . 1 2 ( q r - 0 . 5 ) ] [ ~ ] / ,  TfisTpL273.15K; 

5.094[0.2+0.12(qr-0.5)J, T P < Tfi. 
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Thus,  the  terminal  velocity  used  for  falling  water  is a constant  for 

temperatures  below  the  initial  freezing  temperature  and  above  273.15K 

and  has a linearly  interpolated  value  for  temperatures  in  the  inter- 

mediate  region.  The  above  equations  are  appropriate  if  the  precipitat- 

ing  water  is  assumed  to  fall  through  the  layer  in  one  large mass. 

However,  in  reality,  the  precipitating  water  from  lower  layers  falls 

through  the  base  before  precipitating  water  from  higher  levels.  Again 

as a first  approximation  to  this  process,  it  is  assumed  that  the  pre- 

cipitating  water  falls  through  the  layer  in q bundles  of Aqr (usually 

1 -/kg) each.  Therefore q is  defined  as q /Aqr. r 
Integrating  Eq.  (62)  and  combining  with  the  effects  of fro,  fco 

and q yields 

(63) 

This  equation  determines  the  amount  of  water  collected by the  precipita- 

tion  falling  through a layer of thickness  Az  in  bundles of Aqr. 

However,  the  question  arises  as  to  what  happens  in  the top layer 

of  the  cloud  where  no  precipitating  water  enters  from  above. If no 

collection  is  allowed  to  occur,  then  all of the  suspended  water  in  this 

layer  must  be  evaporated  and  mixed  into  the  environment,  thus  adding  too 

much  moisture  and  thereby  over-cooling  the  environment.  As  an  upper 

boundary  condition,  the  collection  in  the  layer  from z - Az  to z 

is 

TOP TOP 
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Still  follovlng  Keesler,  the  basic  parameterized  rate of evapora- 

tion  of  falling  water  into  subsaturated  air  is 

" dqr  7/20  13/20 . 13/20 
dt K6N0 pe (qe - qse)qr 9 

where N I s  the  number  of  raindrops  per  unit  volume  per  unit  diameter 

range  and  is  set  equal  to  lo7  and p is  the  density  of  the  environmental e 

air  and  is  assumed  constant  at 1 kg  m-3. It should  be  noted  that  the 

assumption  that N is  constant  introduces  error  into  the  calculation 

because  it  is  physically  evident  that  the  small  drops  are  depleted  by 

the  evaporation,  thereby  reducing N and  also  altering  the  Marshall- 

0 

0 

0 .. . 

Palmer  distribution. Also, the  change  in dqr/dt under  conditions  other 

than  standard  pressure  and  density  have  not  been  considered.  This 

deletion  becomes  important  as  the  height of the  cloud  base  increases. 

Integration  of  the  above  equation  yields 

where 

Ks = 3.5 x 10 K6No 2 7/20  13/20 
'e . 

Evaporation  also uses incremental  precipitation  fallout;  thus, qr 

in  the  above  equation  is  replaced  by Aqr and  the  process  is  allowed  to 

occur q times  or  until  the  atmosphere  below  the  cloud  is  saturated. 

This  value  is  then  added  to  the  environmental  specific  humidity  and  the 

environmental  virtual  temperature  is  lowered  to  account  for  the  evapo- 

rational  cooling.  The  atmosphere  is  then  .tested  for  supersaturation 
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. .  
and  if  necessary  incremental  adjustment  is  accomplished. AqeVap is  the 

total  incremental  evaporation  and  is  the  amount  subtracted  from q 
r' 

The  precipitation  at  cloud  base,  PB,  and  the  surface  precipitation, 

P are  calculated  as  follows: S 

pB pw 
E qrB 'mpB 

and 

<; 

where p is  equal  to 1 gm cm . -3 
- ., ... , -. ._ .w 

3.6 Detrainment  Calculations 

The  density  weighted  cloud  profiles  of  virtual  temperature, 

specific  humidity  and  suspended  water  are  horizontally  (isobarically) 

mixed  with  the  density  weighted  subsided  environmental  profiles.  Be- 

cause  the  cloud  radius  varies  with  height  the  actual  fraction  of  cloud 

area  must  be  determined  at  each  vertical  level.  Other  than  this  slight 

complication,  the  mixing is straightforward.  The  suspended  water  is 

evaporated  until  the  environment  becomes  saturated;  any  remaining  water 

is  considered  to  be  environmental  stratiform  cloud. 

If xp and x, are  any  properties  of  the  plume  and  subsided  environ- 

ment,  the  mixed  value, &, is 
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where 

3.7 Final  Calculations 

The  modified  sounding is then  re-examined  for  convection  by  recal- 

culating  the  layer  releasable  instability.  If  any  ri  remains,  the 

convective  process is repeated;  if  not,the  total  effects  of  the  convec- 

tion  are  calculated  and  formed  into  tendencies.  It is seldom  that  more 

than  one  cloud  is  necessary  to  stabilize  the  sounding. 

k 

Having  deduced  the  temperature  change  produced  by  all  the  convec- 

tive  processes  except  for  the  mean  vertical  motion  associated  with  the 

heating,  the  pressure  can  be  adjusted  to  return  to  hydrostatic  balance. 

The  mass  can also be  adjusted  to  reflect  the  net  density  change;  this 

mass adjustment is achieved  by  the  net  cumulus  scale  vertical  motion, 

w that  has  been  ignored  in  the  convection  calculations  up  to  this 

point  (see  Section 3.4). 

6' 

The  value of w is [see  Kreitzberg  et  al.,  1974, Eq. (B-13)] 
6 

where Ap is  the pre ssure change  at a level b ecause  of  the  hydrostatic 

readjustment.  The  value  of T, the  lifetime  of  the  convective  adjustment, 

is  taken  to  be 40 min.  The  sounding  change  due  to  vertical  advection  by 

w depends  upon  the  vertical  displacement, w T ;  so the  effect of w is 
S S s 
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independent  of  the  arbitrary  selection  of T. Notice  that  this  expansion 

is at  constant  pressure  following  the  air  motion. 

After  the  sounding  has  been  modified  by  the  lifting W ~ T ,  the 

departures  of  the  final  temperature,  water  vapor  and  cloud  water  pro- 

files  from  the  initial  profiles  give  the  cumulus  changes  to  be  intro- 

duced  into  the  mesoscale  primitive  equation  model. 

The  upper  boundary  condition  in  the  mesoscale  model  includes 

specification  of  the  local  pressure  tendency  at  the  top of the  model, 

(ap/at) . The  cumulus  convection  will  contribute  the  effect'of  sub- 
grid  scale  motions  to  that  upper  boundary  condition, 

s, Zt 

This  term  accounts  for  the  mass  pushed  out  the  top of the  one-dimensional 

model  in  response  to  the  cumulus  heating.  Of  course,  the  result  is  a 

high  pressure  dome  that  will  induce  horizontal  mass  divergence  in  the 

three-dimensional  model  and  thereby,  cause  the  surface  pressure  to  fall. 

At this  point,  the  convective  changes  are  smoothed  using  a  1-2-1 

horizontal  smoother.  This  prevents  the  convection  from  exciting 2A 

horizontal  waves  in  the PE model.  Before  these  changes  can  be  used  in 

the PE model,  they  must  be  converted  to  tendencies  by  dividing  by  a 

characteristic  time  between  calls  to  the  convective  routine.  Thus,  the 

question  arises,  how  often  does  the  convective  routine  need  to  be  called 

in  order  to  prevent  the  static  instability  from  allowing  destructive 

unstable  amplification?  The  key  quantity  in  determining  the  static 

instability  in  a  conditionally  unstable  atmosphere  is  the  degree  of 

saturation, i.e., is  the  relative  humidity 100% or  not? It should  be 
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noted  that  convection  is  actually  initiated  somewhat before.the environ- 

ment  is  saturated.  'This  is because-;of the  initial  vertical  velocity 

impluse  given  to  the  cloud  parcel.  The  question  can  be  cast  in  the 

following  form: 

when  evaluated  at  the  critical  level of the  sounding. 

Note  that  because  the  horizontal  advection of RH is small compared 

to the  vertical  advection, we'can expand E q .  (71) in  the  following  form: 

1 aRH 1 dRH w aRH 
" = " - " 
RH at RH dt RH aZ 

Utilizing  the  definition  of  relative  humidity  and  saturation  specific 

humidity,  we  have 

1 - dRH = - dq - - dqs = - dq - - de + - dp RH q 
1  1 0 1  1 

e S P  qS q S 

(73) 

or,  using  the  Clausius-Clapeyron  equation: 

1 0 1  dTv + - dp . 1 - dRH = - dq - - RH q 2 P 
RvTv 

The  pressure  term i s  neglected  for  this  argument  because  it  is  small. 

Thus , 



I 

67 

where  dq/dt = 0 ,  dTv/dt - -wr  and  aTv/aZ = 7,. Following  the  same  pro- 

cedure  and  noting  that  dTv/dt = 0 for  the  convection  changes, 

Thus, 

The  convective  rates  are  calculated  from 

9 , " .  aTV 6TV 
at vc*At .' at vc*At ' 

- c -  

where Vc is  the  convective  routine  calling  frequency  and At is  the 

PE time step. As an example,  consider  the  following  conditions: 

TV 

Ye 
-1 km-l . 

a2 

w = 13.8 cm  s-l ; r = 6K km" Y 

mv = 0.45K 9 6q = -0.55 gm kg-' s 

= 280K , q = 8.6 gm kg-' ¶ 

= 5.9K km-' ; a = - 2 . 4 3  gm kg ¶ 

At = 180 s 

Solving  for  convective  frequency,  we  find vc 14. Therefore,  the  con- 

vective  routine must be  called  at  least  every 42 min  in  order  to  control 

the  static  instability. vc may be  more or less  where,  for  example, w is 

larger  or  smaller. 
1 
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For the runs discussed in Chapter 4, the convective routine is 

called  every 20 min. However,  the changes are converted to tendencies 

prorating the changes over the subsequent 40 min and are added to the 

previous convective tendencies.  Thus,  at any one time, convective ten- 

dencies computed  from conditions at  two earlier times are being  fed  into 

the hydrostatic model. 



4.0 A CASE STUDY 

During  the  period 1200 GMT 21 February  through 0600 GMT 

2 2  February  1971, an extratropical  cyclone,  initially  centered  near  the 

southern  tip  of  Texas,  deepened  from 996 mb  to 993 mb  and  moved  north- 

northeastward  to  the  southwest  corner  of  Missouri. . As the.cold"front 

pushed  eastward,  the  warm,  moist,  low-level  air  characterized  by 

potential  instability  was  lifted  and  severe  convection  broke  out.  The 

results  were  tornadoes,  lightning,  hail,  surface  winds  as  high  as 50 to 

60 mph,  and  heavy  rainfall  amounts  ahead  of  the  front  in  east  Texas, 

Louisiana,  Mississippi  and  northward  to  Ohio. All told,  the  convective 

activity  ahead of the  storm  resulted in 117  dead,  nearly 1600 injured 

and  over $20 million  in  damages  (Decker,  1973).  Because  of  its  obvious 

severe  convective  activity,  this  storm  was  selected as an  initial  test 

case. 

4.1 Analysis  and  Initialization - 

The  temperature,  wind  field  and  surface  pressure  analyses  were 

obtained  from  the  National  Center  for  Atmospheric  Research (NCAR) Hemi- 

spheric  General  Circulation  Real  Data  Model (GCM). These  analyses  were 

in  turn  derived  from  the  National  Meteorological  Center (NMC) tempera- 

ture  and  surface  pressure  analyses.  The  wind  field  was  calculated  geo- 

strophically  from  the  hydrostatic  pressure  field  and  then  adjusted  to 

remove  the  vertically  integrated mass divergence.  This  adjustment 

removes  the  Lamb  wave as discussed  by  Washington  and  Baumhefner (1975). 

A complete  description of the NCAR GCM  is  found  In  Oliger  et  al. (1970) 

and  will  not  be  discussed  here  except  to  point  out  that  the  version  of 
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- the  GCM used   for   these  tests has  a h o r i z o n t a l   g r i d   i n t e r v a l   o f  2.5’ 

(-264 km) and a ver t ica l  g r i d   i n t e r v a l   o f  3 km wi th  a su r face   d i agnos t i c  

l a y e r  of 1.5 km. 

To obtain  the  temperature   and wind da ta  a t  t h e  fine-mesh g r i d  

poin ts ,   the   above   f ie lds  were f i r s t   h o r i z o n t a l l y   i n t e r p o l a t e d   u s i n g  

bicubic   spl ine  funct ions  (Fulker ,   1975)  and then   i n t e rpo la t ed   i n   t he  

v e r t i c a l .  The t empera tu re   f i e ld  was v e r t i c a l l y   i n t e r p o l a t e d   l i n e a r l y  

i n  z while   the u and v components  of the  wind were in te rpola ted   us ing  

the  exponent ia l   funct ion shown i n  Eq. (77)  between  the  surface  and 

1.5 km and  then  l inearly  above. 

~ ( z )  = aebZ + c , 

where V is e i t h e r   t h e  u o r  v wind  component  and a,  b and c are de ter -  

mined such   t ha t  V(0 km) = V1, V(1.5 km) = V2 and V(0.75 km) = o.9v2. 

V and V are the   appropr ia te  GCM wind components a t  t he   su r f ace  and 

1.5 km. 
1 2 

The su r face   p re s su re   f i e ld  is a l s o   i n t e r p o l a t e d   t o  fine-mesh g r i d  

po in t   da t a   u s ing   b i cub ic   sp l ine   func t ions .  The pressure  a t  a l l  o t h e r  

l e v e l s  is c a l c u l a t e d   h y d r o s t a t i c l l y  from the   i n t e rpo la t ed   g r id   po in t  

v i r tua l   t empera tu re   da t a .  

To o b t a i n   t h e   i n i t i a l   s p e c i f i c   h u m i d i t y   f i e l d ,   s t a n d a r d   r e l a t i v e  

humidity  rawinsonde  data are analyzed  using  an  opt imal   interpolat ion 

technique  following Gandin  (1963).   In  general   for  any  variable x, we 

can write 

N 
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where x is  the  estimated  grid  point  field  of x, x , the  grid  point 

guess  field, xobs the  station  observed  field, X' the  guess  field  bi- 

linearly  interpolated t o  the  station  grid. N is  the  number  of  observa- 

tions  within  the  range  of  influence  of X; A is  the  weighting  function 

which  is  chosen  such  as  to  minimize,  in  the  least-square  sense,  the 

difference  between  the  true  value  and  the  estimated  value  of X for  a  set 

of  many  observations, i.e. minimize  <(xtrue - )%. Substituting 

Xes t 
A and  setting  the  results  to  zero  yields  the  following  matrix  equation 

est  g 

g 

'est 

from Eq. (78) into  this  expression,  differentiating  with  respect  to 

i 

$ A  = B , (79) 

where 

B =  I 0 

Note  if  the x' fleld  is  the  climatological  field, i.e. x' = <x>, then JI 
I3 g 

is  the  covariance  matrix  between  the  observations and  climatological 

field.  This  matrix  can  be  evaluated  using  several  historical  data  sets 

or  it  can  be  modeled.  The  approach  used  here  is  to  model  the  covariance 

matrix as a  decreasing  function  of  distance,  e , where  a  is  chosen 

such as to  reduce  the  weighting  to 0.04 at d equal 500 km.  The  matrix 

-a d2 
0 

0 
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B cannot   be  evaluated  using  convent ional   data   s ince  the  " t rue"  values  

a t  t h e   g r i d   p o i n t s  are unknown. Therefore,  i t  is assumed t h a t  i t  a l s o  

fo l lows   the  e decrease.  
-a d 2  

0 

Since   i n   gene ra l   t he   cova r i ance   ma t r ix  is i n v e r t a b l e ,  we can  then 

s o l v e  Eq. (79) f o r  A,  

A = B$-' . 

Once A has  been  evaluated  for   each  gr id   point   then  the  es t imated  var i -  

a b l e   v a l u e  i s  so lved   for   us ing  Eq. (78). 

i 

' , I  : 

In   these   exper iments ,   the   var iab le  is the   r e l a t ive   humid i ty  and the  
. . .  

g u e s s   f i e l d  is no t   t he   c l ima to log ica l  mean bu t  is t h e  A i r  Force  Global 

Weather  Central (AFGWC) humidi ty   ana lys i s .   This   perver t s   the  Gandin 

statist ical  approach  s ince i t  is  n o t   c e r t a i n   t h a t   t h e  AFGWC a n a l y s i s  

has   the same statist ics as the  atmosphere. However, for   the  purposes   of  

t h i s   r e s e a r c h ,   t h i s   c o m p l i c a t i o n   d o e s   n o t   c a u s e   a n y   d i f f i c u l t y .   A f t e r  

t h e  re la t ive  humidity  has  been  determined by the  above  technique,  the 

specif ic   humidi ty  is ca l cu la t ed   u s ing  i t  and t h e   i n t e r p o l a t e d  tempera- 

t u r e   f i e l d .  

The cloud  and  rain water f i e l d s  are set  t o   z e r o  a t  a l l  g r i d   p o i n t s .  

This is due t o   l a c k  of d a t a  and  does  delay  the  onset of r a i n   i n   t h e  

f o r e c a s t .   I n   a d d i t i o n   t o   p r o v i d i n g   i n i t i a l   d a t a ,   t h e  GCM provides time- 

dependent  boundary  conditions  for  the  fine-mesh  model  runs.  Boundary 

conditions  on  u, v, Tv, q and p, are l i n e a r l y   i n t e r p o l a t e d   i n   b o t h  time 

and  space  from  the  three-hour GCM his tory  tapes .   This   procedure acts as 
t 

a f i l t e r  which  allows  only  low  frequency GCM in format ion   to   be   t rans-  

mitted  through  the  boundary. 
, .-  . ,  
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4.2 Fine-Mesh  Experiments 

The  fine-mesh  limited-area  model  has  a  1.25O  (-132 km) horizontal 

grid  over  the  domain  shown  in  Fig. 4. As stated  above, 1200 GMT 

21 February  1971  was  selected as the  initial  data  time. 

4.2.1 Experiment E-I 

The  model  for  this  experiment  has  a 1.5 km vertical  grid  interval 

with  a  25  m  diagnostic  boundary  layer.  Figure  5a  shows  the  surface  low 

located  over  the  southern  tip  of  Texas  with  a  central  pressure  of 

996 mb. The  initial  surface  wind,  temperature,  specific  humidity  and 

relative  humidity  fields  are  shown  in  Fig.  5b  through  5e.  The  cold 

front  can  be  seen  trailing  south-southwest  out of the  low  across 

Mexico;  approximately  between  the 8.0 and 10.0 gm kg-' specific  humidity 

isolines  (Fig.  5d).  As  can  be  seen,  there  is  considerable  low  level 

advection  of  warm  moist  air  over  Louisiana,  while  at  the  same  time, 

although  not  shown,  there  is  little  moisture  advection  at  3 km. This 

differential  moisture  advection,  in  addition to an  already  potentially 

unstable  atmosphere,  increases  the  possibility of severe  convection 

occurring  if  a  lifting  source is present.  The  lifting  source is, of 

course,  the  approaching  cold  front. 

Note  that  the  winds  are  very  weak (-1.5  m/s)  and  are  nearly  geo- 

stropic  in  direction. In reality,  the  observed  winds  in  the  Gulf  region 

were  much  stronger;  for  example,  the  observed  wind  at  Lake  Charles, 

Louisiana  (30N,  93W)  was -8 m/s  while  the  initial  conditions  wind  is 

-1 m/s.  Also,  the  initialization  has  nearly  eliminated  the  wind  shift 

at  the  front; for example,  the  observed  wind  at  Corpus  Christi,  Texas 

(28N, 97W) was SSE at -8 m/s,  the  initalized  wind is SW at -1 m/s, 
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Figure 4. Model domain. The dark solid line denotes the fine-mesh 
domain. 
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Figure 5. Fine-mesh initial   conditions (1200 GMT). (a) Surface  pres- 
sure (mb), (b) Surface  vector winds (m/s), (c)  Surface 
temperature ("C), Cd) Surface specif ic  humidity (gm/kg), 
(e) Surface relat ive humidity (%). 
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while.2'  west  at  Larado,  Texas,  the  observed  wind was NU at -10 m/s  and 

the  initialized  wind  is NW at -1 m/s. 

' The  initialization  also  weakened  the  strength  of  the  frontal 

temperature  gradient;  for  example,  the  observed  temperature  at 

Brownsville,.Texas  (southern  most  tip  of  Texas)  was  23.8C  not  -19C  as 

depicted  in  Fig.  5c;  therefore,  since  the  analyzed  temperature in 

northern  Texas  is  very  nearly  correct,  the  gradient  is  reduced  by  about 

5C  in  10"  latitude. 

During  the  subsequent 15 h, the  low center'moved first  northeast- 

ward  along  the  coast  line  and  then  northward  to  the  southwest  corner  of 

Missouri  (Fig. 6 ) .  The 0600 GMT  surface  pressure,  wind,  temperature, 

specific  humidity  and  relative  humidity  fields  are  shown  in  Fig. 7. The 

observed  positions  and  values  of  the  central  low  for  every 3 h  between 

1200  GMT  and 0600 GMT  are  shown  in  Fig. 8. The  low  during  the  first 6 h 

of  the  forecast  tracked  too  far  east  before  turning  north;  by 0600 GMT 

the  position  is  very  well  predicted. It is  speculated  that  this  east- 

ward  drift  is  partially  due  to  the  underestimation  of  the  precipitation 

and  therefore,  the  latent  heat  release  north  of  the  low  during  the  first 

3 h  to 6 h. This is suggested  by  the  slightly  farther  eastward  drift 

and  less  northerly  movement  of  the  low  when  the  model  was  run  dry,  i.e. 

no  latent  heat  release  at  all  (Tracton " et  al.,  1975). 

The  major  cause  of  this  underestimation of latent  heat  release  is 

the  weak  vertical  motions  in  the  initial  state  after  initialization. As 

discussed  earlier,  the  GCM  winds  at  all  levels  other  than  the  surface 

are  initially  geostrophic.  These  wind  profiles  are  then  adjusted  to 

remove  the  vertically  integrated mass divergence.,l:Because  this  adjust- 

ment  is  small  for  geostrophic  winds,  the  winds  above  the 1.5 km GCM 
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Figure 6. Surface pressure (mb) forecast  sequence. (a) 1500 GMT, 
(b) 18OOiGW.,  (c) 2100 GMT, (d) 0000 GMT, (e) 0300 GMT. 
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Figure 7. Fine-mesh  forecast conditions (0600 GMT). (a) Surface pres- 
sure (mb) , (b) Surface  vector winds ( m / s )  , (c)  Surf ace 
temperature ("C), (d) Surface  specific  humidity (gm/kg), 
(e) Surface relative humidity (X). 
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boundary  layer  remain  nearly  geostrophic  and  thus,  contain  very  little 

convergence  or  divergence.  The  surface  wind  is  geostrophic in  direction 

but  is  reduced  in  magnitude  because  of  the GCM boundary  layer  drag 

formulation.  Because  of  their  weak  nature,  these  winds  contribute 

little  to  the  convergence-divergence  fields.  The  initial  vertical  velo- 

city  fields  at 4.5 km (-580  mb)  have  values  between 22 cm/s,  while  the 

equilibrium  values  attained  by  the  model  after 6 h  of  integration  are  on 

the  order'of  ?lo-15  cm/s.  Thus,  the  model  requires  3  h  to 6 h  to  spin- 

up  to  equilibrium. 

Figure 9 shows  the  surface  pressure  at  30N,  92.5W  versus  time  and 

the  central  low  pressure  value  versus  time.  The  initial  drop  in  pres- 

sure  at  30N,  92.5W  is  due  to  the  approaching  low  center;  however,  from 

Fig.  9b  it is apparent  that  the  central  pressure  drops  too  rapidly 

initially. It also  appears  that  there  exists  a  small  amplitude,  low 

frequency  gravity  wave  with  a  period -6 h  and  amplitude  21.5  mb.  This 

wave  is  due  to  the  initial  imbalance  between  the mass and  flow  fields 

and  is  indicative  of  a  problem  with  the  initialization  procedures.  At 

this  time,  there  is  no  satisfactory  solution  to  this  problem  (Gerrity 

and  McPherson,  1970). 

The  wind,  temperature  and  moisture  patterns  in  Fig. 7 at 0600 GMT 

are  indicative  of  the  patterns  during  the 12 h  to 15  h  previous.  The 

strong  low  level  advection of warm  moist  air  just  ahead of the  front  has 

continued,  thus  creating  and  maintaining  potential  instability  in  the 

area. As stated  earlier  this,  along  with  the  frontal  lifting  in  the 

region,  creates  large  amounts  of  static  instability  which  must  be 

released  by  the  convection. 
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Figure 9.  Surface  pressure  versus  time.  (a)  Point 
30N, 92.5W, (b) Central low pressure. 
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Hydrostatic  instability  was  present  initially  over  the  Northern 

New  Mexico-Arizona  border  and  over  Oklahoma,  Arkansas  and  Louisiana; 

thereby  initiating  the  convective  parameterization  routine. An example 

of  this  convection  is  shown  in  the  next  series  of  figures.  The  initial 

sounding  (1200  GMT)  at  32.5N,  92.5W  shows  considerable  potential  and 

static  instability  (Fig. 10). Potential  instability  can  be  identified 

as  a  layer  with  decreasing  static  energy (c T + gz + Lcq);  this  condi- 
tion  exists  in  the  layer  from  1.5 km to 4.5 km.  Conditional  instabi- 

lity  can  be  identified as a region  with  decreasing  saturated  static 

energy (c T + gz  + L q ); this  condition  also  exists  from  1.5 km to 

4.5 km. Therefore,  the  potential  instability  can  be  realized  in  the 

form  of  convection  based  at  any  level  in  this  layer  which  becomes 

saturated  or  nearly  saturated.  The  necessary  condition  used  in  the  con- 

vective  adjustment  scheme  is  if a parcel  which  is  given  an  initial 

vertical  velocity  impulse of w  can  reach  saturation  before  its  verti- 

cal  velocity  decreases  to  wpmin  then  convection  will  occur  based  at  this 

level.  In  this  case  a  parcel  beginning  at 1.5 km  with  relative  humidity 

of  95.4%  reached  saturation  by 2.0 km (one  convective  grid  interval) 

before  w  became  less  than  w 

P V  

P V   c s  

Pi 

P  pmin 
The  resultant  cloud is quite  vigorous,  with  a  depth  of  9 km and  a 

maximum  vertical  velocity  of  -11.5 m/s (Fig.  llb).  The  increased 

temperature  excess  (Fig.  lla)  at 8 km is due to  the  change  of  phase  to 

ice.  Note  that  in  regions  of  acceleration  the  radius  generally  decreases 

while  in  regions  of  deceleration  the  radius  expands  (Fig.  llc).  This 

would  be  the  case  exactly  if  there  were  no  entrainment;  however,  since 

there  is  entrainment,  the  radius  will  expand  even  if  there is no 

acceleration  or  deceleration.  The  cloud  water  or  ice  is  a  maximum  in 
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Figure  10. Sounding for 32.5NY 92.5W at 1200 GMT. (a') Skew-T plot of 
temperature and dew-point, (b) Static  energy (sol id)  and 
saturated  static energy  (dashed) profi les .  
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Figure 11. Cloud quantities for 32.5N,  92.58  at 1200 GMT.  (a) Tempera- 
ture  excess  before and after subsidence, (b) Vertical velo- 
city, (c) Cloud  radius, (d) Liquid or solid  water, 
(e) Induced environmental subsidence. 
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the  lower  cloud  while  the  rain  water  or  ice is a  maximum  in  the  upper 

cloud  (Fig.  lld).  The  sudden  decrease in  rain  dropped  at  approximately 

8 km is  due to  the  change  from  water  to  ice  which  has  a  somewhat,slower 

fall  velocity  than  the  liquid;  thus,  less  falls  out  of  the  rising  parcel. 

The  cloud  water  after  rain-out  is  re-evaporated  into  the  environment  or 

left  as  stratiform  cloud  water  during  mixing  of  the  dissipated  cloud 

debris. 

The  percent  cloud  cover  is  11.2%.  Thus,  to  keep  the  net  cloud 

vertical  motion  zero,  the  subsidence  reached  a  magnitude  of -500 m  in 

the  upper  regions  of  the  cloud  (Fig.  lle).  Figure  lla  shows  the  temper- 

ature  excess  after  subsidence.  Note  the  integrated  temperature  excess 

is of order 0. This, as discussed in Chapter 3,  yields  a  zero  mean 

cloud  buoyancy  and an  equal  vertically  integrated  pressure  change  in  the 

cloud  and  in  the  subsided  environment. 

The  rain  from  this  cloud is 14.75 mm giving  an  area  average  precip- 

itation  of  1.65 mm. This  area  average  rain  is  assumed  to  fall  over  the 

next 20 min  in  the  three-dimensional  model.  The  cloud-induced  tempera- 

ture  and  moisture  changes  cause  the  region  at  cloud  base  to  warm  and  dry, 

leaving  the  potential  instability  but  destroying  the  static  instability 

by  reducing  the  relative  humidity  at  the  cloud  base.  This  result is 

depicted  in  both  Figs. 12 and  13. It should  be  noted  again  that  the 

sounding  shown  in  Fig. 12 does  not  ever  exist  in  the  three-dimensional 

model,  but  rather  the  changes  from  the  convection  are  inserted  over  the 

next 40 min.  Thus, if no  other  changes  were  occurring  in  the  primitive 

equation  model,  the  sounding  in  Fig. 12 would  be  the  resultant  sounding 

after 40 min  of  integration;  this,  of  course,  is  not  the  case  as 
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(a  ) 
Figure 12. Cumulus modified sounding for 32.5N, 92.5W at 1200 GMT. 

(a) Skew-T  plot of temperature and  dew-point, (b) Static 
energy  (solid)  and  saturated  static  energy  (dashed) 
profiles. 
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Figure 13. Convective induced  changes. (a) Temperature change, 
(b) Specific humidity  change. 
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c o n t i n u e d   l i f t i n g  i s  creKting new s ta t ic  i n s t a b i l i t y  as the  old 

i n s t a b i l i t y  is being  destroyed. 

Af te r   the   in i t ia l   ou t -break   of   convec t ion ,   the   convec t ion   wi thdrew 

t o  a region  over  Oklahoma and  Northern  Texas  (Fig.  14).  This band in-  

t e n s i f i e d  and  grew i n   s o u t h e r l y   e x t e n t   u n t i l  0000 GMT. During t h i s  time 

the band moved eastward  to  the  Louisiana-Mississippi  border.  Between 

0000 GMT and  0600 GMT, the  band cont inued  to  move eastward  while de- 

c r e a s i n g   i n   i n t e n s i t y   u n t i l  by 0600 GMT the  band  had d i s s ipa t ed .  

Figure  15 shows the   obse rved   squa l l - l i ne   pos i t i ons  as determined 

from the  N O M  Weather  Service  Hourly  Radar Summaries. The pos i t i ons  

shown are those  of  the  major  band,  other lesser bands  which  formed  and 

d i s s ipa t ed  are not   depic ted .  As can  be  seen,   the  model moved t h e   s q u a l l  

eastward  too  rapidly.  The p red ic t ed   pos i t i on  a t  0300 GMT corresponds 

approximately  to   the 0600 GMT observed  posi t ion.  

The squal l   c loud   tops  were under   predicted  throughout   the  forecast  

period; however, they   d id   exhib i t   the   cor rec t   t rends   ( see   Table  1). The 

Table 1. Reported  and  Predicted Cloud  Tops 

T i m e  Reported Cloud Predic ted  Cloud 
GMT Tops TOP 

Radar  (Model) (1000's f t )  ~~ (1000's f t ) 

1145  (1200) 40-50 34.5 

1445  (1500) 32-40 20.6 

1745  (1800) 

2045  (2100) 

26-4 2 

43-54 

25.5 

27.2 

2345 (0000) 39-56 40.3 

0245  (0300) 

0545 (0600) 

31-50 

34-48 

27.2 
- 
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Figure 14. Convective precipitation  rate [m (10 s) 3 at  (a) 1800 GMT, 4 -1 

(b) 2100 GMT, (c) 0000 GMT, (d) 0300 GMT, (e) 0600 GMT. 
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F i g u r e  15. Observed squall-line positions at 1500, 1800, 2100, 0000, 0300 - -v 

and 0600 GMT. 
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p red ic t ed   convec t ive   p rec ip i t a t ion  rates and  both  the  observed  and  pre- 

d ic ted   c loud   tops  show t h e  maximum i n t e n s i t y  a t  about 0000 GMT. How- 

ever ,   the  model d i s s i p a t e d   t h e  band f a r   t oo   ea r ly ;   obse rva t ions  show t h e  

band present  a t  0000 GMT, 23  February  over  Florida.  The model's  under- 

predict ion  of   c loud  tops i s  due to the   s t rong   s tab le   reg ion   above  

10.5 km i n   t h e   i n i t i a l  GCM data .  Recall t h e   n e x t   d a t a   p o i n t   i n   t h e  GCM 

da ta  was 13.5 km. Thus, t h e r e  is a l o s s  of   reso lu t ion   in   de te rmining  

the  height   of   the   t ropopause.   Actual   data  show the   t ropopause   in   the  

s q u a l l  area loca ted  a t  -200 mb n o t  250 mb as t h e   i n i t i a l   d a t a   i n d i c a t e d .  

S t a b l e   p r e c i p i t a t i o n   d i d   n o t   b e g i n   u n t i l   a f t e r  1700 GMT. This is 

c o n t r a r y   t o   t h e   p r e c i p i t a t i o n   o b s e r v a t i o n s   i n   t h a t   s u r f a c e   p r e c i p i t a t i o n  

was being  recorded  in   the Texas-Oklahoma area a t  1200 GMT, i .e .  a t  model 

s tar t -up.   This   discrepancy  can  be  explained as a f a u l t  of t h e   i n i t i a l  

d a t a  which d id   no t   con ta in   any   c loud   o r   r a in  water. Therefore,   the 

'model required 3 h t o  form  cloud water, convert  i t  t o   r a i n  water and 

then le t  t h e   r a i n  water f a l l   t o   t h e  ground.  Figures  16, 1 7  and 18 show 

the  accumulated  convect ive  and  s table   precipi ta t ion amounts a t  1800, 

0000 and 0600 GMT. Figure  19 shows tha t   a l t hough   t he   p rec ip i t a t ion  ra te  

is large  over   Louis iana  and  Mississ ippi ,   the  model  accumulation is 

gene ra l ly  less than 5 nun. This is p a r t i a l l y   b e c a u s e  of the   rap id  east- 

ward movement of   the   squa l l   and   par t ia l ly   because   o f   the   l ack   of  mois- 

t u r e   o v e r   t h e  Gulf  and i n  t h e   s q u a l l   i n i t i a t i o n   r e g i o n   i n  Texas. 

Figure  19b shows the   t o t a l   accumula t ed   p rec ip i a t ion  a t  0600 GMT 

while  Fig.  2 0  depic t s   the   observed  18 h s u r f a c e   p r e c i p i t a t i o n  amount. 

The fo recas t   has   co r rec t ly   p red ic t ed   t he   l oca t ion   o f   t he  maximum over 

Oklahoma but   has   underest imated i ts  magnitude. The maximum over 
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Figure 16. Predicted  (a)  convect.lve and (b)  stable accumulated pre- 
cipitation (mm) amaiints a t  1800 GMT. 
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Figure 1 7 .  Predicted (a) convective and (b) stable accumulated pre- 
cipitation (m) amounts atdl000 GMT. 
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Figure 18. Predicted (a) convective and (b) stable accumulated pre- 
cipitation (nun) amounts at 0600 GMT. 
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Figure 19. (a)  Total  precipitation  rate [mm (10 s)  3 a t  0000 GMT. 4 -1 
(b) Total 18 h accumulated'precipitation (mm) at  0600 GMT. 
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wi th   cen t r a l  maximums as indicated.  
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Kentucky  and  Tennessee i s  completely  missed by the   forecas t .   Also  

the   p rec ip i ta t ion   in   the   squa l l - l ine   reg ion   has   been   underes t imated .  

4.2.2 Experiment E- I1  

As mentioned earlier, a narrow  band  of  moisture  from  the  squall- 

l ine  formation  region  south  a long  the  Texas Gulf  Coast is n o t   g r e s e n t   i n  

t h e  i n i t i a l  humidity  field.  Because  of i t s  narrow  band  s t ructure ,   the  

standard  rawinsonde  network  did  not  detect  i t s  presence; i t s  e x i s t e n c e  

is shown by a cloudy  region  in  sa te l l i t e  p i c tu re s .  To remedy t h i s  

s i t u a t i o n  and test t h e   s e n s i t i v i t y  of t he  model t o  changes i n   r e l a t i v e  

humidity,  bogus  moisture  soundings are i n s e r t e d   i n   t h e  satel l i te  cloudy 

area. The rawinsonde  and  bogus  data are then  analyzed as before.  A l l  

o t h e r   f i e l d s  are i d e n t i c a l   t o   t h o s e   i n  E-I. 

A s  can  be  seen  from  Figs:   21  and  22,  the  effect  of the  bogus  sound- 

ings  is  to   mois ten  a band  from  Central   Texas  south  to  the  Texas  Coast,  

Th i s   i nc reased   mo i s tu re   caused   an   i nc rease   i n   t he   p rec ip i t ab le  water 

from 2 mm along  the Texas-Oklahoma borde r   t o  26 mm j u s t  east of 

Brownsville,  Texas  (Fig.  23). 

Th i s   i nc reased   mo i s tu re   i n i t i a t ed  a l a r g e r   s t a b l e   p r e c i p i t a t i o n  

rate [+2.75 mm(l0 s) ] a t  1500 GMT over   the  Texas-Oklahoma border. It 

a l so   i n i t i a t ed   convec t ion   o f f   t he   Texas   coas t  a t  t h e   i n i t i a l  time s t e p  

(Fig.  24a). The e f fec t   o f   th i s   convec t ion   which  was n o t   p r e s e n t   i n  E-I 

is. t o   i n i t i a t e  a g r a v i t y  wave wi th   ve r t i ca l   ve loc i ty   ampl i tude  of 

+3 cm/s (Fig.  24b)  and  pressure  change  amplitude  of k0.2 mb (not  shown). 

The  wave c o u l d   a l s o   b e   s e e n   i n   t h e  u and v wind  components. The e f f e c t  

of t h i s  wave over   the 3 h per iod w a s  t o  warm and  cool  the  mid-levels by 

+0.2C. Thus, t h e   g r a v i t y  waves exc i t ed  by the  convective  adjustment 

scheme have small amplitudes  and seem t o  cause l i t t l e  i f  any harm. 

4 -1 
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Figure 21. Initial   1.5 km relative humidity (X) f ie lds ,  (a) E-I, 
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1500 GMT E-I1  minus E-I difference  f ields of (a) accumu- 
lated  convective  precipitation (mm) and (b) 4.5 km vertical 
velocity (cm/s). 



By 0000 GMT, the  accumulated  stable  and  convective 

amounts   have  increased  with  the  largest   d i f ference (9.7 
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p r e c i p i t a t i o n  

nrm) being  the 

convec t ive   increase   in   the   squa l l - l ine   reg ion   (F ig .   25) .  The increased 

p r e c i p i t a t i o n  and i t s  a s s o c i a t e d   l a t e n t   h e a t  release has  caused a lower- 

ing (-1 mb) of t h e   s u r f a c e   p r e s s u r e  (Fig.  26a)  and  an  increased 

(+6.5 cm/s) upward ver t ical  veloci ty   (Fig.   26b) .  The pressure  change is 

due t o   t h e   i n c r e a s e d  (1C) mid-level  heating  (Fig.  26d). The evaporation 

of r a i n  water below  cloud  base  has  lowered (-2.6C) t h e   s u r f a c e  tempera- 

ture  (Fig.   26c).  The advect ion of moist  low-level a i r  i n   t h e   s q u a l l -  

l ine   reg ion   has   a l so   been   increased;   thus   he lp ing   to   se l f -propagate   the  

squa l l   l i ne .   Th i s  is shown in   F ig .  27 by the   i nc rease   i n   t he   convec t ive  

p r e c i p i t a t i o n  rate over   nor thern  Alabama, i.e. t h e   s q u a l l   l i n e  is st i l l  

p r e s e n t   i n  E-I1 a t  0600 GMT. 

The increased   humidi ty   in   the   squa l l - l ine   format ion   reg ion  and over 

t h e  Gulf of Mexico has   i nc reased   t he   squa l l - l i ne   p rec ip i t a t ion  by 10 mm 

while  doing l i t t l e  t o   t h e   s t a b l e  and   convec t ive   p rec ip i ta t ion   amounts   in  

the   reg ion   of   the   sur face  low  (Fig. 28) .  The inc reased   p rec ip i t a t ion  

has  deepened  the  low  and  increased  the  circulation  which  helped  self-  

propagate  the  convection. 

4.2.3  Experiment E-I11 

To test t h e   e f f e c t  of  added v e r t i c a l   r e s o l u t i o n   i n   t h e   l o w - l e v e l  

mois t   boundary   l ayer ,   the   model ' s   ver t ica l   g r id  is changed t o   t h e  

fo l lowing   ver t ica l ly   expanding   gr id ;  0.0, 0.025,  0.375,  0.75,  1.25,  2.0, 

3.0,  4.5,  6.0, 7.5, 9.0, 10.5,  12.0,  14.0,  16.5 km. T h i s   y i e l d s   s i x  

g r i d   p o i n t s  below 3 km i n s t e a d  of t h e   t h r e e   u s e d   i n  E-I and E-11. The 

GCM i n i t i a l   d a t a  and  t ime-dependent   boundaries   are- interpolated  to   the 

above  grid.  The E-I1  enhanced relative humidity  data is re-analyzed 
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Figure 25. 0000 GMT E - I 1  minus E-I difference  fields of (a) accumu- 
lated convective  Precipitation (mm) and (b) accumulated 
stable  precipitation (.mm) . 
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Figure 27. 0600 GMT E-I1  minus E-I difference field of convective 
precipitation  rate [m (104~)-11. 
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Figure 28. (a) 0600 GMT E-I1 minus E-I difference field of total 
accumulated precipitation (.m), (b) 0600 GMT total 
accumulated precipitation (m). 
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onto  the  above  grid.  Because  the  enhanced  humidity  data w a s  used, 

comparisons are made between E- I1  and E-111. 

The E-111 squal l - l ine  formation  region and the  Louis iana Gulf Coast 

are s l i g h t l y  more moist (1 t o  5 nun) whi le   the  Texas-Mexico  Gulf Coast 

area is s l i g h t l y   d r i e r  (-3 mm) than   the  E-11 case (Fig. 29). A cross- 

s e c t i o n  a t  35N (Fig.  30) shows tha t   the   addi t iona l   boundary   l ayer   g r id  

points   have  captured a low-level  humidity maximum which was not   de tec ted .  

i n   t h e  E-I1 experiment.  This  added  l6w-level  humidity  lowered by 1 km 

the   convect ive  bases   over  Oklahoma which   resu l ted   in   increased  convec- 

t i on   ea r ly   i n   t he   fo recas t   (be fo re   1800  GMT; see Fig.  31)  which pumped 

more low-level  moisture  to mid- and  upper   levels ;   thereby  helping  to  

sa tura te   the   mid- leve ls  and i n c r e a s e   t h e   v e r t i c a l   v e l o c i t y .  These two 

e f f e c t s  produced  more s t a b l e   p r e c i p i t a t i o n   i n   t h e  enhanced  convective 

reg ion   than   occur red   in  E-11. 

The f i n a l  E-111 minus E- I1  p r e c i p i t a t i o n   d i f f e r e n c e   f i e l d s  

(Fig. 32) exh ib i t   i nc reased   p rec ip i t a t ion  amounts  over  the Oklahoma 

observed maximum; thus   i nc reas ing   t he  amount to   w i th in  -40% of t he  ob- 

served amount (Fig.  33).  There was a l s o   i n c r e a s e s  (-2 t o  4 mm) over   the 

squa l l   reg ion .  The major   e f fec t   o f   the   increased  ver t ical  r e s o l u t i o n  

was to   increase   the   ear ly   convec t ive   mois ture  pumping  and l a t e n t   h e a t  

release in   the   reg ion   ahead  of the  approaching low. 
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Figure 29. In i t ia l  E-I11 minus E-I1  precipitable water (mm) difference 
f i e l d .  
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tude for ( a )  E-I1 and (b) E-111. The contour fnterval is 
10 and the shaded regions are areas of 100%. 
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Figure 31. 1800 GMT E-I11 minus E-I1 difference  f ie lds  of (a) accumu- 
lated  convective  precipitation (mm) and (b) accumulated 
stablg  precipitation (nun). 
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.Figure 32. 0600 GMT E - I 1 1  minus E - I 1  difference  fields of  (a) accumu- 
lated convective  precipitation (mm), (b) accumulated  stable 
precipitation (m) and  (c) total accumplated precipitation 
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Figure 33. 0600 GMT E-I11 total accumulated precipitation (nun). 
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5.0 SUMMARY AND CONCLUSIONS . -  

5.1 Review of the  Lateral  Boundary  Conditions 

Since  present  day  computer  economics  do  not  allow  unlimlted.calcu- 

lations,  restrictions  on  the  number  of  grid  points  and  time  steps  are 

necessary  when  developing  a  numerical  model.  Numerical  stability  places 

still  other  restrictions  on  the  relationship  between  length  of  time  step 

and  size  of  grid  interval.  Therefore,  if  the  phenomenon  being  studied 

requires  a  small  grid  interval  and  thus,  short  time  steps,  the  model 

domain  and/or  the  length  of  forecast  must  be  limited.  These  restric- 

tions  have  made  limited-area  modCls  a  necessary  tool  for  numerical 

investigation  of  intermediate-  and  small-scale  phenomena. 

This  limited-area  restriction  introduces  lateral  boundaries  to  the 

model  domain  and  thus,  the  problem of how  to  treat  these  boundaries. 

The  ideal  boundary  would  be  one  which  seemed  to  not  exist, i.e. one 

which  did  not  allow  the  interior  to  know  there  were  boundaries.  Practi-. 

cally,  this  means  that  the  boundaries  allow  changes  outside  the  limited- 

area  domain  to  influence  the  model  interior  while  not  letting  the 

interior  changes  reflect  at  the  boundaries.  Mathematically,  the  re- 

quirements  of  the  above  conditions  are  not  fully  understood  at  this  time. 

In  spite  of  the  mathematical  uncertainties  and  problems,  a  practical 

solution  to  the  choice  of  lateral  boundaries  is  presented.  This  solution 

does  not  attack,  but  rather  circumvents  the  mathematical  requirements  of 

a  well-posed  set of boundary  conditions.  The  conditions  mesh  the  large- 

scale  imposed  tendencies  and  the  model  calculated  tendencies.  In  addi- 

tion,  a  region  of  high  wavenumber-selective  damping i S  required.  The 

major  drawback  to  ,these  conditions  is  that  this  region of increased 
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damping  reduces  the  predictive  usefulness  of 15 to 20% of  the  grid  and 

therefore,  the  usefulness  of  an  equal  amount  of  computer  resources. 

These  boundary  conditions  are  investigated  using  analytic  and 

numerical  finite-difference  techniques  for  advective  waves  and  finite- 

difference  methods  for  gravity  waves.  The  results of these  tests  indi- 

cate  that  the  boundary  conditions  break  down  long  and  intermediate  length 

interior  waves  into  short  waves;  thus,  the  need  for  the  damping  region  to 

keep  these  waves  from  propagating  back  into  the  model  interior.  The 

conditions  also  allow  energy  on  long  and  intermediate  scales  to  enter 

the  model  domain  with  little  degradation. 

Although  not  explicitly  discussed,  the  results  of  Chapter 4 also 

demonstrate  the  utility  of  these  conditions  in  that  they  allowed  the 

forecast  experiments  to  be  conducted  with  little if any  lateral  boundary 

problems.  The  precipitation  region  over  the  Washington  Coast  (Figs. 19, 

28 and 33) is not  a  result  of  boundary  problems  as  it  might  be  inter- 

preted,  but  rather is a  low  pressure  system  beginning  to  enter  the  model 

domain  through  the  western  boundary as specified  by  the GCM boundary 

conditions.  The  circulation  around  the  low  is  shown  in  the u and v 

components of the  wind  at 0600 GMT (Fig.  7a)  and  by  the  increased  mois- 

ture  and  warmer  temperatures  (Figs. 7b, c  and d) off  the  Washington 

Coast. 

5.2 Review  of  the  Convective  Parameterization  Scheme 

Again  due  to  computer  size  and  speed  limitations,  the  scale  of 

motions  described  by  a  numerical  model  must  be  limited.  This  necessi- 

tates  the  parameterization  of  scales  that  are  too  small  to  be  resolved 

by  the  model  grid.  The  purpose  of  any  parameterization  scheme is to 
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represent  the  effects  of  the  phenomenon  being  parameterized on the 

phenomenon  being  calculated  explicitly, i.e. the  calculated  phenomenon 

should  react as if  the  parameterized  phenomenon  were  also  being  calcu- 

lated-explicitly. 

In  this  case,  the  scale  of  activity  being  parameterized  is  the  con- 

vective  scale.  In  mid-latitudes  there  is  a  wide  variety of convection; 

surface  rooted  convection,  mid-level  based  altostratus-embedded  convec- 

tion,  frontally-forced  convection,  etc.  The  parameterization  scheme 

must  be  able  to  work  in  all  situations,  not  for  just  one  type  of  convec- 

tion.  Previously  developed  parameterization  schemes  were  constructed 

for  tropical  convection  (low-level  based  and  boundary  layer  forced)  or 

for  global  general  circulation  models  (long  time-scale  models). ' Neither 

of  these  types  of  schemes  is  applicable  for  short-range  mid-latitude 

quantitative  precipitation  forecasts. 

The  scheme  presented  is  designed  to  have  the  versatility  necessary 

in  mid-latitudes  and  to  be  applicable  for  short-range  forecasts.  The 

results  in  Chapter 4 indicate  that  indeed  the  scheme  is  able  to  func- 

tion  in  the  frontally-forced  squall-line  region,  in  the  gently-rising 

altostratus  region  ahead  of  the  approaching  low  center  and,  later  in  the 

forecast,  in  the  over-riding  region  ahead  of  the  warm  front.  The  pre- 

dicted  convective  bases  ranged  from 1.7 km  in  the  squall  region  to 

3.0 km ahead  of  the  low.  Also,  the  closure  assumption is based on a 

shorter  time  scale  which  allows  for  shorter  scale  variations  than  pre- 

vious  schemes.  This is apparent  in  the  one-shot  convection  off  the 

Texas  Coast  in  E-11.  Instability  was  present  initially  with  the 

enhanced  humidity  field  and  was  therefore  released,  but  since  there  was 
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no  large-scale  forcing  the  instability  was  not  re-generated  and  there- 

fore  neither  was  the  convection. 

5.3 Review  of  the  Case  Study 

Three  experiments  are  discussed,  the  first (E-I ) ,  or  base  case  used 

a 1.5 km vertical  grid  interval  and  humidity  analysis  based  on  standard 

rawinsonde  observations.  This  experiment  correctly  predicted  the  posi- 

tion  of  the  precipitation  maximum  over  Oklahoma,  but  underpredicted  its 

magnitude. A maximum  over  Kentucky-Tennessee  was  totally  missed.  The 

squall-line  precipitation  was  also  too  light.  The  squall  position  was 

predicted  to  move  eastward  somewhat  too  rapidly. 

The  predicted  precipitation  amount  over  Oklahoma  was  combined 

stable  and  convective  in  nature.  This  agrees  with  observations  in  that 

hourly  precipitation  records  indicate  steady  rainfall  rates  over  the 

forecast  period  with  periods  of  heavy  rainfall.  In  the  squall  region 

observations  show  rainfall  periods  lasting 1 h  to 2 h  with  high  rates. 

This  type  of  precipitation  was  also  indicated  by  the  forecast. 

A narrow  band  of  moisture  extending  from  Central  Texas  south  along 

the  coast  was  suggested  by  satellite  cloud  observations.  This  band  was 

too  narrow  to  be  observed  by  the  conventional  rawinsonde  observations 

network.  Case E-I1 attempted  to  enhance  the  initial  moisture  field to 

reflect  this  narrow  band.  The  inclusion  of  the  moisture  band  enhanced 

the  squall-line  precipitation  while  doing  little  to  the  Oklahoma  maximum. 

The  initiation  and  dissipation  of  the  squall  line  as  well  as  the  squall- 

line  precipitation  amounts  were  affected  by  this  narrow  moisture  band. 

Although  the  enhanced  humidity  field  is  not  necessarily  the  "true" 

humidity  field,  it is a  reasonable  and  possible  field  and  thus,  indicates 
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the  sensitivity  of  short-range  quantitative  precipitation  amounts  to 

changes  in  moisture  fields. 
.. . 

. .  . . .  
The  third  experiment  which  used  increased  low-level  vertical  re- 

. .  

solution  indicates  that,  even  without  more  horizontal  resolution  and 

therefore  without  added  observational  costs,  better  short-range  precipi- 

tation  forecasts  can  be  obtained.  The  Oklahoma  maximum  was  increased  by 

-25% so that  it  more  nearly  agreed  with  observations.  Also  some  in- 

. .  

crease  was  noted  in  the  convective  region,  which  also  improved  the 

forecast. 

5.4 Suggestions  for  Future  Research 

The  most  singular  suggestion  which  permeates  this report is 

the  need  for  better  analysis  and  initialization  techniques.  The  initial 

data  from  the GCM have  been  greatly  maligned  by  this  investigation;  how- 

ever,  in  all  fairness,  the  data  have  been  somewhat  misused  and  pushed 

beyond  its  intended  purpose  by  the  author.  Several  more  sophisticated 

analysis  and  initialization  techniques  are  currently  becoming  available 

and  are  still  being  evaluated  (for  example;  Schlatter,  1975;  Shapiro  and 

Hastings,  1973;  Bleck, 1975). 

The  convective  adjustment  needs  to  be  further  tested  against  real 

data  such as the  GATE  and  in  the  future, SESAME observations.  These 

experiments  have  the  increased  observational  time  and  space  resolution 

necessary  to  yield  data  concerning  convective-mesoscale  interaction. 

Such  questions  as  how  do  the  parameterization  scheme's  thermodynamic 

energy,  moisture  and mass vertical  transports  agree  with  observed  trans- 

ports  need  to  be  answered so improvements  can  be  made.  Also  how  this 
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scheme's transports  compare  with  other scheme's transports  needs to be 

examined. 

The  original  purpose for the development of this model  was to  con- 

struct a  mesoscale  model with a grid interval on  the order of 35 km over 

a  domain -1000 km square. Preliminary tests have  been  made on  this  grid 

but were beyond the scope of this report. Continued  testing on 

this scale should  be  continued. 

Finally,  the model's vertical  coordinate should be changed to 

include  the  effects of terrain. Work.toward this goal  is  also already 

underway. 
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APPENDIX 1 

It is reasonably   t ransparent  t o  unde r s t and   t he   o r ig in  of t h e  water 

l o a d i n g   i n   t h e   p r e s s u r e   g r a d i e n t  terms of t h e  momentum equat ions,  

Eqs. (1)  and  (2). It is t rue   t ha t   t he   l oad ing   t e rm is a small correc-  

t ion   to   the   p ressure ;   for   example ,   wr i t ing   the   hydros ta t ic   equa t ion   in  

f i n i t e  form, we have 

Using t h e   d e f i n i t i o n s  of pm and p as s t a t e d   i n   S e c t i o n   2 . 1   y i e l d s  
;,, : , 

- >  

'm . 
= p(1  + c + r )  ; (Al. 1 )  

thus,  p and p d i f f e r  by an  amount  on the   o rde r  of  0.1%.  Therefore, 

even if the  atmosphere were s a t u r a t e d  and contained 1 gm/kg of l i q u i d  

water through a depth  of  10 km t he  "wet" su r f ace   p re s su re  would d i f f e r  

from t h e  "dry" su r face   p re s su re  by only 1 mb. However, i f  we assume a 

g r i d   i n t e r v a l  of  100 km between t h e  "wet" and  ''dry"  sounding the  pres- 

su re   g rad ien t  is 1 mb/100 km as opposed t o   z e r o . i f  we neglec ted   the  

load ing   e f f ec t s .  Thus, the   loading  term is considered  important   in  

eva lua t ing   t he   p re s su re   g rad ien t  term. 

m 

The loading  terms  in   the  temperature  and pressure  tendency equa- 

t i o n s ,  Eqs. (3 )  and (4) are somewhat  more obscure;  thus,  a d e r i v a t i o n  of 

these   equat ions  w i l l  fol low.   Firs t ,   the   pressure  tendency  equat ions;  

s t a r t i n g   w i t h   t h e   h y d r o s t a t i c   e q u a t i o n   a n d   d i f f e r e n t i a t i n g   w i t h   r e s p e c t  

t o  t y i e l d s  
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where  the  loading  effects  are  included so that  the  pressure  at  any 

level  reflects  the  weight  of  the  liquid  and  solid  water  above  that 

level.  Recalling Eq. (Al.l)  and differentiating  with  respect  to t 

yields 

(Al. 3 )  

Neglecting  the  volume of the  liquid  water  which is approximately 

less  than  the  volume  of  air,  we  can  write  the  continuity  equation 

as 

(A1.4) 

Combining  Eqs. (A1.2),  (A1.3)  and (A1.4)  and  integrating  with  respect 

t o  z from  the  top, zT, down  yields 

at -]dz + gpw + [E - g,] . 
2 

z t 

Adding  and  subtracting  the  quantity gtZt [$mp(c+r)$ + ap(c+r)/az] dz to 

the  right-hand  side  yields 

z 

.& at = - g [ i f * p 2  - w ] d z  dt + [$ - gpmw] . (Al. 5 )  

z z t 
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The  inclusion  of  the  spherical  correction  term  in  the  continuity  equa- 

tion  yields  Eq. (4). 

For  the  thermodynamic  equation,  we  start  with  the  first  law  for 

moist  ,air 

G = c  - - L*  dT 
pm dt p dt ’ (Al. 6 )  

which  neglects  the  heat  capacity of the  liquid  water.  Noting  that 

C 
dT  dT dTV 

pm dt c (1 + 0.8q) 
P = cp at 

and  substituting  Eq. (A1.6) into  the  prognostic  equation for T yields 

or 

where  again  the  hydrostatic  equation  with  water  loading ha& been  used. 

Note  this i s  identical  to  Eq. (3) in  Section 2.1 with  the  exception  of 

the  convective  and  small-scale  effects. 

The  loading  terms  in  the  diagnostic  vertical  velocity  equation, 

Eq. (9), follow  directly  from  the  pressure  tendency  equation  derived 

above. 

i 
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